Work = force x distance.
force = mass x acceleration
work = mass x acceleration x diastance
use acceleration of gravity in this problem
W (J) = m (kg) x a (m/s/s) x d (m)
W = 78 x 9.8 x 6
W = 4586.4
Dinosaurs but I need the whole groups yo tell you ;)
So far, all we have is a very short true statement. If it's a multiple choice question, then where are they ?
Answer:
a) 1321.45 N
b) 1321.45 N
c) 2.66 m/s^2
d) 2.21*10^-22 m/s^2
Explanation:
Hello!
First of all, we need to remember the gravitational law:

Were
G = 6.67428*10^-11 N(m/kg)^2
m1 and m2 are the masses of the objects
r is the distance between the objects.
In the present case
m1 = earth's mass = 5.9742*10^24 kg
m2 = 497 kg
r = 1.92 earth radii = 1.92 * (6378140 m) = 1.2246*10^7 m
Replacing all these values on the gravitational law, we get:
F = 1321.45 N
a) and b)
Both bodies will feel a force with the same magnitude 1321.45 N but directed in opposite directions.
The acceleration can be calculated dividing the force by the mass of the object
c)
a_satellite = F/m_satellite = ( 1321.45 N)/(497 kg)
a_satellite = 2.66 m/s^2
d)
a_earth = F/earth's mass = (1321.45 N)/( 5.9742*10^24 kg)
a_earth = 2.21*10^-22 m/s^2
Answer:
the answer, the correct one is C
Explanation:
Let's propose the solution of this problem to know which explanation is correct, when the concha stick with the disc is an impulse exercise
I = ΔP
∫ F dt = pf-po
∫ F dt = m v_f - m v₀
Therefore, during the time that the contact lasts, a force is applied to the disk, which causes that if the amount of movement increases and therefore its speed increases, when the constant ceases the forces are reduced to zero and the disk no longer changes its momentum following with constant velocity.
When reviewing the answer, the correct one is C