A second order reaction varies with the square of the concentration of the reactant. Therefore, halving the concentration will reduce the rate of reaction by a factor of 4.
The answer is E.
Answer:Absolute zero is the lowest possible temperature where nothing could be colder and no heat energy remains in a substance. ... By international agreement, absolute zero is defined as precisely; 0 K on the Kelvin scale, which is a thermodynamic (absolute) temperature scale; and –273.15 degrees Celsius on the Celsius scale.
Explanation:
Answer:
CH3CH2NH3+/CH3CH2NH2 would have the largest pKa
Explanation:
To answer this question we must know Kb of CH3CH2NH2 is 5.6x10⁻⁴, and for C6H5NH2 is 4.0x10⁻¹⁰. And the CH3CH2NH3+ and C6H5NH3+ are related with these substances because are their conjugate base. That means:
pKa of CH3CH2NH3+ = CH3CH2NH2; C6H5NH3+ = C6H5NH2
Also, Kw / Kb = Ka
Thus:
pKa of CH3CH2NH3+/CH3CH2NH2 is:
Kw / kb = Ka = 1.79x10⁻¹¹
-log Ka = pKa
pKa = 10.75
pKa of C6H5NH3+/ C6H5NH2 is:
Kw / kb = Ka = 2.5x10⁻⁵
-log Ka = pKa
pKa = 4.6
That means CH3CH2NH3+/CH3CH2NH2 would have the largest pKa
The 3-dimensional orientation of a sublevel is known as atomic orbital.
In quantum mechanics, Atomic orbitals are locations around an atom's nucleus where electrons are most likely to be at any particular time(specific orbits). These specific orbits exist in levels and can be broken down into sublevels.
Each sublevel has an orbital and it is oriented differently in 3-dimensional space.
The atomic orbital is a mathematical function that depicts how one or two electrons in an atom behave as seen in waves.
Learn more about atomic orbitals here:
brainly.com/question/1832385