Answer:
The number of bright fringes per unit width on the screen is,
Explanation:
If d is the separation between slits, D is the distance between the slit and the screen and
is the wavelength of the light. Let x is the number of bright fringes per unit width on the screen is given by :

is the wavelength
n is the order
If n = 1,

So, the the number of bright fringes per unit width on the screen is
. Hence, the correct option is (B).
Answer:
d. decreases
Explanation:
The law of conservation of momentum tells us that the sum of momenta before the collision is equal to the sum of momenta after the collision. The bag has no momentum as it falls onto the boat because its velocity is zero in the horizontal direction. But after it hits the boat, it's momentum increases while the momentum of the system remains the same. That means a component of the system must decrease somewhere else. And that component is the velocity, not the mass, of the boat.
Answer:
The change in current at
is 
Explanation:
From the question we are told that
The resistance is 
The current is 
The change in voltage with respect to time is 
The change in resistance with time is 
According to ohm's law

differentiating with respect to time using chain rule

substituting value at R = 456


Answer:
it is sooo easy u need to use magnetic panels on the rail and put the magnet on the train it works under the principal of magnetic
The change in the angle of circular motion is analogous to <u>linear velocity</u> in linear motion
<u>Explanation:</u>
We define angular velocity ω as the rate of change of an angle. The greater the rotation angle in a given amount of time, the greater the angular velocity. angular velocity refers to how fast an object rotates or revolves relative to another point, i.e. how fast the angular position or orientation of an object changes with time.
The units for angular velocity are radians per second (rad/s). Angular velocity ω is analogous to linear velocity v. Linear velocity is the measure of “the rate of change of displacement with respect to time when the object moves along a straight path.” It is a vector quantity.