We do not feel the gravitational forces from objects other than the Earth because they are weak.
Assuming that all the bullet’s energy heats the paraffin, its final temperature is 27.1 degree C. The correct option is D.
<h3>What is temperature?</h3>
Temperature is the degree of hotness and coldness of the material.
The energy of the bullet E = 1/2 mv²
E = 1/2 x 10 x 10⁻³ x (2000)²
E = 2 x 10⁴ J
This heat is used in heating the paraffin
E = m x c ΔT = m x c (Tfinal -Tinitial)
2 x 10⁴ J = 1 x 2.8 x 10³ x (Tfinal -20)
Tfinal = 27.1°C
Thus, the final temperature is 27.1 degree C. The correct option is D.
Learn more about temperature.
brainly.com/question/15267055
#SPJ1
You take the inverse of the total resistances of each branch and add them up.
So if you have 5ohm, 7 ohm, and 10ohm, you would add
1/5 + 1/7 + 1/10 = 31/70
Then flip it back by either using the <span>x<span>−1</span></span><span> (inverse) key on your calculator or simply dividing 70 by 31 to get a total of 2.26ohms</span>
Answer:
The magnitude of the rate of change of the child's momentum is 794.11 N.
Explanation:
Given that,
Mass of child = 27 kg
Speed of child in horizontal = 10 m/s
Length = 3.40 m
There is a rate of change of the perpendicular component of momentum.
Centripetal force acts always towards the center.
We need to calculate the magnitude of the rate of change of the child's momentum
Using formula of momentum


Put the value into the formula


Hence, The magnitude of the rate of change of the child's momentum is 794.11 N.
The components of the net force on the cart is determined as 67.66 N.
<h3>
Component of net force on the cart</h3>
The component of net force on the cart is determined by resolving the forces into x and y -components.
T1 = 30 N
T2 = 40 N
T1x = -30cos(0) = 30 N
T1y = 30sin(0) = 0
T2x = 40 x cos(30) = 34.64 N
T2y = 40 x sin(3) = 20 N
∑X = 30 N + 34.64 N = 64.64 N
∑Y = 0 + 20 N = 20 N
<h3>Resultant force</h3>
R = √(64.64² + 20²)
R = 67.66 N
Learn more about net force here: brainly.com/question/25239010
#SPJ1