A tsunami.Because tsunamis are unpredictable in a way, a body of water that is very vast can cause an uprising of water. As for instance, if I lived in Hawaii, and their was a tsunami coming forth from each side, it would be a problem.
The number of energy levels to which an electron can jump depends on the amount of energy the electron possesses. Each energy level has a specific amount of energy an electron needs to have before it can be in there. So, if an electron doesn't have enough energy to be in that energy level then it won't jump to that higher level.
Answer:Videos
For example, when oxygen and hydrogen react to produce water, one mole of oxygen ... These conversion factors state the ratio of reactants that react but do not tell ... In a typical chemical equation, an arrow separates the reactants on the left ... For example, to determine the number of mol
Answer : The correct option is, Mass
Explanation :
As we know that there are 3 states of matter :
Solid state : It is a state in which the particles are closely packed and does not have any space between them. This state have a definite shape and volume.
Liquid state : It is a state in which the particles are present in random and irregular pattern. The particles are closely arranged but they can move from one place to another. This state have a definite volume but does not have a fixed shape.
Gaseous state : It is a state in which the particles are loosely arranged and have a lot of space between them. This state have indefinite volume as well as shape.
If we are taking 100 grams of ice then after melting its mass remains same but its shape, volume and temperature will be changed and after evaporation its mass remains same but its shape, volume and temperature will be changed.
Hence, the mass will stay constant, no matter if the substance is in the solid, liquid, or gas state.
Answer:
Electromagnetic waves are typically described by any of the following three physical properties: frequency (f), wavelength (λ), or intensity (I). Light quanta are typically described by frequency (f), wavelength (λ), or photon energy (E).
Explanation:
please mark as brainlist