Cryo-EM is used to preserve and characterize cycled positive electrodes. Under regular cycling conditions, there isn't an intimate coating layer like CEI.A small electrical short can cause a stable conformal CEI to form in place. The conformal CEI's chemistry is revealed by EELS and cryo-(S)TEM.
It has been assumed that the intimate coating layer generated on the positive electrode, known as cathode electrolyte interphase (CEI), is crucial. However, there are still numerous questions about CEI. This results from the absence of useful instruments to evaluate the chemical and structural characteristics of these delicate interphases at the nanoscale. Here, using cryogenic electron microscopy, we establish a methodology to maintain the natural condition and directly see the interface on the positive electrode.
Learn more about Cathode electrolyte interphase here:
brainly.com/question/861659
#SPJ4
The phosphate group of one nucleotide bonds covalently with the sugar molecule of the next nucleotide, and so on, forming a long polymer of nucleotide monomers. The sugar–phosphate groups line up in a “backbone” for each single strand of DNA, and the nucleotide bases stick out from this backbone. The carbon atoms of the five-carbon sugar are numbered clockwise from the oxygen as 1′, 2′, 3′, 4′, and 5′ (1′ is read as “one prime”). The phosphate group is attached to the 5′ carbon of one nucleotide and the 3′ carbon of the next nucleotide. In its natural state, each DNA molecule is actually composed of two single strands held together along their length with hydrogen bonds between the bases.
Answer:
2 hydrogen and 1 oxygen atoms
Explanation:
Answer:
<em> 14, 508J/K</em>
ΔHrxn =q/n
where q = heat absorbed and n = moles
Explanation:
<em>m = mass of substance (g) = 0.1184g</em>
1 mole of Mg - 24g
<em>n</em> moles - 0.1184g
<em>n = 0.0049 moles.</em>
Also, q = m × c × ΔT
<em> Heat Capacity, C of MgCl2 = 71.09 J/(mol K)</em>
<em>∴ specific heat c of MgCL2 = 71.09/0.0049 (from the formula c = C/n)</em>
<em>= 14, 508 J/K/kg</em>
ΔT= (final - initial) temp = 38.3 - 27.2
= 11.1 °C.
mass of MgCl2 = 95.211 × 0.1184 = 11.27
⇒ q = 11.27g × 11.1 °C × <em>14, 508 j/K/kg </em>
<em>= 1,7117.7472 J °C-1 g-1</em>
<em />
<em>∴ ΔHrxn = q/n</em>
<em>=1,7117.7472 ÷ 0.1184 </em>
<em>= 14, 508J/K</em>