Answer:
Approximately
.
Assumption: the ball dropped with no initial velocity, and that the air resistance on this ball is negligible.
Explanation:
Assume the air resistance on the ball is negligible. Because of gravity, the ball should accelerate downwards at a constant
near the surface of the earth.
For an object that is accelerating constantly,
,
where
is the initial velocity of the object,
is the final velocity of the object.
is its acceleration, and
is its displacement.
In this case,
is the same as the change in the ball's height:
. By assumption, this ball was dropped with no initial velocity. As a result,
. Since the ball is accelerating due to gravity,
.
.
In this case,
would be the velocity of the ball just before it hits the ground. Solve for
.
.
Answer
t = 367.77 s = 6.13 min
Explanation:
According to the law of conservation of energy:

where,
P = Electric Power of Heater = 300 W
t = time required = ?
m_g = mass of glass = 300 g = 0.3 kg
m_w = mass of water = 250 g = 0.25 kg
C_g = speicific heat of glass = 840 J/kg.°C
C_w = specific heatof water = 4184 J/kg.°C
ΔT_g = ΔT_w = Change in Temperature of Glass and water = 100°C - 15°C
ΔT_g = ΔT_w = 85°C
Therefore,

<u>t = 367.77 s = 6.13 min</u>
Answer:
A) A warm wire
Explanation:
A warm wire has the most resistance. Heating the metal wire causes atoms to vibrate more, which in turn makes it more difficult for the electrons to flow, increasing resistance. Heating the wire increases resistivity.
Answer:
The turnover number of the enzyme molecule bovine carbonic anhydrase = 67,272,727.27 s^–1.
Explanation:
Given:
The concentration of bovine carbonic anhydrase = total enzyme concentration = Et = 3.3 pmol⋅L^–1 = 3.3 × 10^–12 mol.L^–1
The maximum rate of reaction = Rmax (Vmax) = 222 μmol⋅L^–1⋅s^–1 = 222 × 10^–6 mol.L^–1⋅s^–1
The formula for the turnover number of an enzyme (kcat, or catalytic rate constant) = Rmax ÷ Et = 222 × 10^–6 mol.L^–1⋅s^–1 ÷ 3.3 × 10^–12 mol.L^–1 = 67,272,727.27 s^–1
Therefore, the turnover number of the enzyme molecule bovine carbonic anhydrase = 67,272,727.27 s^–1
Answer:
Fatty acids.
Explanation:
-Long term energy storage is stored in the form of triglycerides .
-They are efficient storing molecules. They are more efficient thatn glycogen(cabohydrates).
-Fatty acids are more calori dense hence them being ideal for long term energy storage.