Answer:
114.44 J
Explanation:
From Hook's Law,
F = ke................. Equation 1
Where F = Force required to stretch the spring, k = spring constant, e = extension.
make k the subject of the equation
k = F/e.............. Equation 2
Given: F = 10 lb = (10×4.45) N = 44.5 N, e = 4 in = (4×0.254) = 1.016 m.
Substitute into equation 2
k = 44.5/1.016
k = 43.799 N/m
Work done in stretching the 9 in beyond its natural length
W = 1/2ke²................. Equation 3
Given: e = 9 in = (9×0.254) = 2.286 m, k = 43.799 N/m
Substitute into equation 3
W = 1/2×43.799×2.286²
W = 114.44 J
2m/s^2, this is because F=ma, meaning a is also equal to F/m. The car applies 1500N in one direction and outside sources apply a total of -500N, meaning the 500kg car is moving forward with a total of 1000N of force. Taking the total 1000N and dividing it by 500kg gives you and acceleration of 2m/s^2. Hope this helps!
Answer:
(a) T = 2987.6 k
(b) T = 19986.2 k
Explanation:
The temperature of a star in terms of peak wavelength can be given by Wein's Displacement Law, which is as follows:

where,
T = Radiated surface temperature
= peak wavelength
(a)
here,
= 970 nm = 9.7 x 10⁻⁷ m
Therefore,

<u>T = 2987.6 k</u>
(b)
here,
= 145 nm = 1.45 x 10⁻⁷ m
Therefore,

<u>T = 19986.2 k</u>
Note: I'm not sure what do you mean by "weight 0.05 kg/L". I assume it means the mass per unit of length, so it should be "0.05 kg/m".
Solution:
The fundamental frequency in a standing wave is given by

where L is the length of the string, T the tension and m its mass. If we plug the data of the problem into the equation, we find

The wavelength of the standing wave is instead twice the length of the string:

So the speed of the wave is

And the time the pulse takes to reach the shop is the distance covered divided by the speed:
Answer:
I don't now sorry HHHAHAH GOOD LUCK