Im pretty sure it nitric acid
Kilauea volcano in Hawaii emits 200-300 tons of sulfur dioxide into the atmosphere each day. This is an example of
- the impact of natural processes on the earth's environment.
- air pollution from a natural source.
- the magnitude of the chemistry associated with the environment.
Kilauea volcano in Hawaii emits noxious compounds of sulfur dioxide and other harmful pollutants as a result of a reaction with atmospheric water vapors and oxygen.
This reaction results in acid rain and volcanic smog which pollutes the air.
Over the years, the volcano has become a potential threat to health as harmful oxides are accelerating respiratory problems and acid rain destroys crops, and also harms water supplies.
If you need to learn more about the Kilauea volcano click here:
brainly.com/question/22843284
#SPJ4
Answer:
MOLAR MASS = 32 g/mol
Explanation:
Condition of standard temperature and pressure(STP) are as follow:
Temperature = 273 K
Pressure = 1 atm (or 100000 Pa)
Here atm is atmosphere and Pa is Pascal
STP conditions arte used for measuring gas density and volume using Ideal Gas Law.Here 1 mole of ideal gas occupies 22.4 L of volume.
According toi Ideal Gas Equation :
PV = nRT
where P = pressure, n= number of moles, V = volume ,R= Ideal Gas Constant and T= temperature

From question:
V=280 ml = 0.28 L
P = 1 atm
R=0.08205 L atm/K mol
T=273 K
Putting values in above formula :

n = 0.0125 moles
Now 

given mass = 0.4 g (given)

On solving we get:
Molar mass = 32 g/mol
Answer:
The intermolecular forces between water molecules are stronger than those between oxygen molecules. In general, the bigger the molecule, the stronger the intermolecular forces, so the higher the melting and boiling points.