Answer:
-1.05 V
Explanation:
A detailed diagram of the setup as required in the question is shown in the image attached to this answer. The electrolytes chosen are SnCl2 for the anode half cell and MnCl2 for the cathode half cell. Tin rod and manganese rod are used as the anode and cathode materials respectively. Electrons flow from anode to cathode as indicated. The battery connected to the set up drives this non spontaneous electrolytic process.
Oxidation half equation;
Sn(s) ------> Sn^2+(aq) + 2e
Reduction half equation:
Mn^2+(aq) + 2e ----> Mn(s)
Cell voltage= E°cathode - E°anode
E°cathode= -1.19V
E°anode= -0.14 V
Cell voltage= -1.19 V - (-0.14V)
Cell voltage= -1.05 V
The molality is calculated using the following rule:
molality = number of moles of solute / kg of solvent
From the periodic table:
molar mass of lithium = 6.941 gm
molar mass of chlorine = 35.453 gm
molar mass of LiCl = 6.941 + 35.453 = 42.394 gm
number of moles found in 42 gm = mass / molar mass = 42 / 42.394 = 0.99
molality = 0.99 / 3.6 = 0.275 m
<span> Au</span>₂(SeO₄)₃
O = -2 × 4 = -8
Se = + 6
So,
(+6 - 8) = -2
Means (SeO₄) contains -2 charge, Now multiply -2 by 3
-2 ₓ 3 = -6
Means,
Au₂ + (-6) = 0
Au₂ = +6
Or,
Au = 6 / 2
Au = +3
Result:
Au = +3
Se = +6
O = -2
Ni(CN)₂
Cyanide (CN⁻) contains -1 charge,
So,
N = -3
C = +2
Then,
Ni + (-1)₂ = 0
Ni - 2 = 0
Or,
Ni = +2
Result:
N = -3
C = +2
Ni = +2
Answer:
4.90 g
Explanation:
Given that:
volume of t-pentyl alcohol = 5 mL
the standard density of t-pentyl alcohol = 0.805 g/mL
Recall that:
density = mass(in wt) /volume
mass = density × volume
mass = 0.805 g/mL × 5 mL
mass = 4.03 g
Volume of HCl used = 12 mL
The reaction for this equation is shown in the image attached below.
From the reaction,
88.15 g of t-pentyl alcohol reacts with concentrated HCl to yield 106.59 g pf t-pentyl chloride.
4.03 g of t-pentyl alcohol forms,
of t-pentyl chloride.
Therefore,
Theoretical yield of t-pentyl chloride = 4.90 g
Answer:
Explanation:
When there is difference between the concentration of the content of a cell and the solution surrounding the cell, there will be an Electrochemical gradient or Concentration gradient. Therefore, some solute will tend to move from the region of high concentration to the region of lower concentration through the cell membrane.
Such a movement is called Primary Active Transport