Answer:
Chemical equation:
HNO₃ + Al(OH)₃ → Al(NO₃)₃ + H₂O
Explanation:
Chemical equation:
HNO₃ + Al(OH)₃ → Al(NO₃)₃ + H₂O
Balanced chemical equation:
3HNO₃ + Al(OH)₃ → Al(NO₃)₃ + 3H₂O
Ionic equation:
3H⁺ + 3NO⁻₃(aq) + Al(OH)₃(s) → Al³⁺(aq) + 3NO₃⁻¹(aq) + 3H₂O(l)
Net ionic equation:
Al(OH)₃(s) + 3H⁺(aq) → Al³⁺(aq) + 3H₂O(l)
The NO⁻₃ are spectator ions that's why these are not written in net ionic equation. The water can not be splitted into ions because it is present in liquid form.
Spectator ions:
These ions are same in both side of chemical reaction. These ions are cancel out. Their presence can not effect the equilibrium of reaction that's why these ions are omitted in net ionic equation.
In the Terrestrial ecosystem, examples might include the following such as tempature, light and water. In the Ocean Ecosystem, abiotic factors would include salinity and ocean currents
By hot springs, fumaroles and geysers.
I'm assuming false but really have no clue
Answer:
C11H25SO4
Explanation:
The total mass of the compound is 253.4 g, so, the mass of each element will be:
C: 52.14% of 253.4 = 0.5214x253.4 = 132.12 g
H: 9.946% of 253.4 = 0.09946x253.4 = 25.20 g
S: 12.66% of 253.4 = 0.1266x253.4 = 32.08 g
O: 25.26% of 253.4 = 0.2526x253.4 = 64.00 g
The molar mass are: C = 12 g/mol, H 1 g/mol, S = 32 g/mol, and O = 16 g/mol
So, to know how much moles will be, just divide the mass calculated above for the molar mass:
C: 132.12/12 = 11 moles
H: 25.20/ 1 = 25 moles
S: 32.08/32 = 1 mol
O: 64.00/16 = 4 moles
So the molecular formula is C11H25SO4