Answer:
a. 2 Hz b. 0.5 cycles c . 0 V
Explanation:
a. What is period of armature?
Since it takes the armature 30 seconds to complete 60 cycles, and frequency f = number of cycles/ time = 60 cycles/ 30 s = 2 cycles/ s = 2 Hz
b. How many cycles are completed in T/2 sec?
The period, T = 1/f = 1/2 Hz = 0.5 s.
So, it takes 0.5 s to complete 1 cycles. At t = T/2 = 0.5/2 = 0.25 s,
Since it takes 0.5 s to complete 1 cycle, then the number of cycles it completes in 0.25 s is 0.25/0.5 = 0.5 cycles.
c. What is the maximum emf produced when the armature completes 180° rotation?
Since the emf E = E₀sinθ and when θ = 180°, sinθ = sin180° = 0
E = E₀ × 0 = 0
E = 0
So, at 180° rotation, the maximum emf produced is 0 V.
Answer:
The Sun's layers consist of the following in this order.
1) Corona
2) Transition Region
3) Chromosphere
4) Photosphere
5) Convection Zone
6) Radiative Zone
and last but not least 7) The Core
Hope this helps ;)
Answer:
x = 1.00486 m
Explanation:
The complete question is:
" The potential energy between two atoms in a particular molecule has the form U(x) =(2.6)/x^8 −(5.1)/x^4 where the units of x are length and the num- bers 2.6 and 5.1 have appropriate units so that U(x) has units of energy. What is the equilibrium separation of the atoms (that is the distance at which the force between the atoms is zero)? "
Solution:
- The correlation between force F and energy U is given as:
F = - dU / dx
F = - d[(2.6)/x^8 −(5.1)/x^4] / dx
F = 20.8 / x^9 - 20.4 / x^5
- The equilibrium separation distance between atoms is given when Force F is zero:
0 = 20.8 / x^9 - 20.4 / x^5
0 = 20.8 - 20.4*x^4
x^4 = 20.8/20.4
x = ( 20.8/20.4 )^0.25
x = 1.00486 m
The distance is 17 and the displacement is 1