Answer:
It would be static discharge and conduction
Explanation:
The conduction of static energy is pulled throughout the clothes and left over static electricity is what causes the spark.
I think you forgot to include the acceleration due to
gravity of astronauts. I assume that it is = 0.170 g. To get the answer we have
to use the formula s = v0t – (1/2) At². Where s is the altitude, A is the
acceleration of gravity, t is the time after throwing.
v = v0 –At
v = 0 at max altitude so v0 – At = 0
t = v0/A at max altitude
Using the formula above for the altitude:
s = v0t – (1/2) At²
s = v0(v0/A) – (1/2) A (v0/A)²
s = v0²/A – (1/2) v0²/A
s = (1/2) v0²/A
The earth: E = (1/2) v0²/g
The moon: M = (1/2)v0²(0.17g)
So, take the ratio of M/E = g/0.17g = 1/0.17 = 588
M = 5.88 E
He can throw the wrench 5.88 times higher on the moon
<span>M =5.88 (10 m) = 58.8 meters that the can throw
the wrench a little over on the moon.</span>
Answer: -49m/s.
Explanation:
As the rock only falls, we will assume that the initial vertical velocity is zero.
We neglect the air friction, so the only force acting on the rock is the gravitational force, this means that the acceleration is -g = -9.8m/s^2.
Then we can write:
a(t) = -9.8m/s^2
To write the velocity of the rock, we must ingrate over time and get:
v(t) = (-9.8m/s^2)*t + v0
where v0 is the initial vertical velocity, and as we said above, v0 = 0m/s
Then the vertical velocity as a function of time is:
v(t) = (-9.8m/s^2)*t
Now, the question is:
"...If a rock falls for 5 seconds near the surface of the earth and with no air friction, it will reach a velocity of..."
Then we need to evaluate the velocity equation in t = 5 seconds.
v(5s) = (-9.8m/s^2)*5s = -49m/s.