Answer:
volume is the correct answer
Explanation:
Answer:
F = 3.86 x 10⁻⁶ N
Explanation:
First, we will find the distance between the two particles:

where,
r = distance between the particles = ?
(x₁, y₁, z₁) = (2, 5, 1)
(x₂, y₂, z₂) = (3, 2, 3)
Therefore,

Now, we will calculate the magnitude of the force between the charges by using Coulomb's Law:

where,
F = magnitude of force = ?
k = Coulomb's Constant = 9 x 10⁹ Nm²/C²
q₁ = magnitude of first charge = 2 x 10⁻⁸ C
q₂ = magnitude of second charge = 3 x 10⁻⁷ C
r = distance between the charges = 3.741 m
Therefore,

<u>F = 3.86 x 10⁻⁶ N</u>
Answer : Relatively hot objects
Explanation : We know that, the temperature of the objects is inversely proportional to their wavelengths. The objects emitting radiation in the visible region have short wavelength and hence are relatively hotter.
We know the range of wavelength of the visible spectrum is from 400 nm to 780 nm.
Answer:
a) The electric field at that point is
newtons per coulomb.
b) The electric force is
newtons.
Explanation:
a) Let suppose that electric field is uniform, then the following electric field can be applied:
(1)
Where:
- Electric field, measured in newtons per coulomb.
- Electric force, measured in newtons.
- Electric charge, measured in coulombs.
If we know that
and
, then the electric field at that point is:


The electric field at that point is
newtons per coulomb.
b) If we know that
and
, then the electric force is:



The electric force is
newtons.