EPA Regulations provides a certified course for the technicians involved in the Air-conditioning system.
Answer: Option (b)
<u>Explanation:</u>
The EPA regulation has implemented an act called the "Clean Air Act" under the "section of 609".
This act provides some basic requirements for EPA Regulation such as follows;
- Refrigerant: This unit must be approved by EPA Regulations before being implemented into the atmosphere.
- Servicing: This system provides a certified course for technicians in service and also approve them with proper refrigerant equipment.
- Reuse Refrigerants: The use of recycled refrigerants must be properly monitored before it comes in to serve.
Answer:
T=151 K, U=-1.848*10^6J
Explanation:
The given process occurs when the pressure is constant. Given gas follows the Ideal Gas Law:
pV=nRT
For the given scenario, we operate with the amount of the gas- n- calculated in moles. To find n, we use molar mass: M=102 g/mol.
Using the given mass m, molar mass M, we can get the following equation:
pV=mRT/M
To calculate change in the internal energy, we need to know initial and final temperatures. We can calculate both temperatures as:
T=pVM/(Rm); so initial T=302.61K and final T=151.289K
Now we can calculate change of U:
U=3/2 mRT/M using T- difference in temperatures
U=-1.848*10^6 J
Note, that the energy was taken away from the system.
Answer:
Power required to overcome aerodynamic drag is 50.971 KW
Explanation:
For explanation see the picture attached
Answer:
<em>No, the velocity profile does not change in the flow direction.</em>
Explanation:
In a fluid flow in a circular pipe, the boundary layer thickness increases in the direction of flow, until it reaches the center of the pipe, and fill the whole pipe. If the density, and other properties of the fluid does not change either by heating or cooling of the pipe, <em>then the velocity profile downstream becomes fully developed, and constant, and does not change in the direction of flow.</em>
Answer:
no of unit is 17941
Explanation:
given data
fixed cost = $338,000
variable cost = $143 per unit
fixed cost = $1,244,000
variable cost = $92.50 per unit
solution
we consider here no of unit is = n
so here total cost of labor will be sum of fix and variable cost i.e
total cost of labor = $33800 + $143 n ..........1
and
total cost of capital intensive = $1,244,000 + $92.5 n ..........2
so here in both we prefer cost of capital if cost of capital intensive less than cost of labor
$1,244,000 + $92.5 n < $33800 + $143 n
solve we get
n > 
n > 17941
and
cost of producing less than selling cost so here
$1,244,000 + $92.5 n < 197 n
solve it we get
n >
n > 11904
so in both we get greatest no is 17941
so no of unit is 17941