Answer:
55.66 m
Explanation:
While falling by 50 m , initial velocity u = 0
final velocity = v , height h = 50 , acceleration g = 9.8
v² = u² + 2gh
= 0 + 2 x 9.8 x 50
v = 31.3 m /s
After that deceleration comes into effect
In this case final velocity v = 17 m/s
initial velocity u = 31.3 m/s
acceleration a = - 61 m/s²
distance traveled h = ?
v² = u² + 2gh
(17)² = (31.3)² - 2x 61xh
h = 690.69 / 2 x 61
= 5.66 m
Total height during which he was in air
= 50 + 5.66
= 55.66 m
Answer:

Explanation:
Given:
- wavelength of light in the air,

- time taken to travel from the source to the photocell via air,

- time taken to reach the photocell via air and glass slab,

- thickness of the glass slab,

<u>Now we have the relation for time:</u>

hence,

c= speed of light in air



For the case when glass slab is inserted between the path of light:
(since light travel with the speed c only in the air)
here:
v = speed of light in the glass


Using Snell's law:



The gravitational acceleration at any distance r is given by

where G is the gravitational constant, M the Earth's mass and r is the distance measured from the center of the Earth.
The Earth's radius is
, so the meteoroid is located at a distance of:

And by substituting this value into the previous formula, we can find the value of g at that altitude:

Potential energy (PE ) = m g h
Where:
m = mass = 3800 kg
g = acceleration due gravity = 10 m/s^2
h = heigth = 110 meters
Replacing:
PE = 3800 * 10 * 110 = 4,180,000 J
It has to due with numbers so I would say the last one!