Answer:
the cell is the smallest unit
Answer:
ax = 6.43m/s²
Explanation:
The acceleration is the time derivative of the velocity function ax = dvx(t)/dt
We have been given the velocity function v(t) and also the velocity v = 12.0m/s and we are requested to calculate the acceleration at this time which we don't know.
So the first step is to calculate the time at which the velocity =12.0m/s and with this time calculate the acceleration. Detailed solution can be found in the attachment below.
Answer:
I = 8.75 kg m
Explanation:
This is a rotational movement exercise, let's start with kinetic energy
K = ½ I w²
They tell us that K = 330 J, let's find the angular velocity with kinematics
w² = w₀² + 2 α θ
as part of rest w₀ = 0
w = √ 2α θ
let's reduce the revolutions to the SI system
θ = 30.0 rev (2π rad / 1 rev) = 60π rad
let's calculate the angular velocity
w = √(2 0.200 60π)
w = 8.683 rad / s
we clear from the first equation
I = 2K / w²
let's calculate
I = 2 330 / 8,683²
I = 8.75 kg m
Answer:
If child weight is equal to rope force then child will move with uniform speed
or we can say that the child will remain at rest in his position
Explanation:
As we know that child is hanging by rope
so here there will be two forces on the child
1) Weight or gravitational force which act vertically downwards
2) Tension in the rope which act vertically upwards
Now if child will accelerate upwards then tension force must be more than the weight of the child
If tension force is less than the weight then child will decelerate and his speed will decrease
if tension force is equal to child weight then in that case the child will remain at rest or it will move with same speed