Answer: option B: conduction.
Conduction is the heat transfer that happens between two bodies in direct contact, due to the collision of the molecules, atoms and electrons within the body (microscopical level).
Answer
2) 1.5×10-2 m
Explanation
The potential difference is related to the electric field by:
(1)
where
is the potential difference
E is the electric field
d is the distance
We want to know the distance the detectors have to be placed in order to achieve an electric field of

when connected to a battery with potential difference

Solving the equation (1) for d, we find

Answer:
The ball would have landed 3.31m farther if the downward angle were 6.0° instead.
Explanation:
In order to solve this problem we must first start by doing a drawing that will represent the situation. (See picture attached).
We can see in the picture that the least the angle the farther the ball will go. So we need to find the A and B position to determine how farther the second shot would go. Let's start with point A.
So, first we need to determine the components of the velocity of the ball, like this:






we pick the positive one, so it takes 0.317s for the ball to hit on point A.
so now we can find the distance from the net to point A with this time. We can find it like this:



Once we found the distance between the net and point A, we can similarly find the distance between the net and point B:







t= -0.9159s or t=0.468s
we pick the positive one, so it takes 0.468s for the ball to hit on point B.
so now we can find the distance from the net to point B with this time. We can find it like this:



So once we got the two distances we can now find the difference between them:

so the ball would have landed 3.31m farther if the downward angle were 6.0° instead.
Answer:
Circuit one will have more current than circuit two
Explanation:
I am assuming that you have to see which circuit has the greater current in this case. Well, this is the perfect example of Ohm's Law, which states the following -
V = IR,
where V = voltage / potential difference, I = current, and R = resistance
If one circuit has twice the voltage and half the resistance of the second circuit, as voltage is directly proportional to the resistance -
2V = I( 1 / 2R ),
4V = IR,
I = 4V / R
Whereas in the second circuit -
V = IR,
I = V / R
As you can note, voltage is directly proportional to the current ( I ) as well as the resistance. The only difference between the two formulas I = 4V / R, and I = V / R is the difference in the voltage. With the voltage being 4 times greater in the first circuit, and current is 4 times greater in the first circuit as well.
<u><em>Hence, circuit one will have more current than circuit two</em></u>
Answer:
You kinda left out the options you want us to choose from.
Resend the question with Full details