Answer:
Open spaces in water's solid structure makes its solid state less dense than its liquid state.
Explanation:
- Water unlike other liquids is special. It contracts when cooled, down to a temperature of 4°C but thereafter begins to expand as it reaches 0°C and turns into ice.
- This property is useful for the preservation of marine life in very cold temperatures. During winter, the surface water in water lakes and rivers starts cooling. Upon reaching the temperature of 4°C, the surface water descends to the bottom as it denser.
- This help in the maintenance of temperature of the water at the bottom at 4°C. It is in this layer that marine life is sustained.
Answer:
Gravitational force is also decreases.
Explanation:
Gravitational force is directly proportional to the mass of an object and inversely properly to the distance between their centres. Directly means if one increases the other automatically increases or if one decreases, the other also decreases. There is a direct relationship between mass and gravitational force so if mass of the bodies decrease, the gravitational force is also decreases.
Answer/Explanation:
Chlorine and Fluorine are in the Halogen family. The elements in the Halogen family are:
Fluorine (F)
Chlorine (Cl)
Bromine (Br)
Iodine (I)
Astatine (At)
Tennessine (Ts)
Hydrogen (H) is a nonmetal
Oxygen (O) is a nonmetal
Lithium (Li) is an alkaline metal.
Answer:
1.64x10⁻¹⁸ J
Explanation:
By the Bohr model, the electrons surround the nucleus of the atom in shells or levels of energy. Each one has it's energy, and the electron doesn't fall to the nucleus because it can reach another level of energy, and then return to its level.
When the electrons go to another level, it absorbs energy, and then, when return, this energy is released, as a photon (generally as luminous energy). The value of the energy can be calculated by:
E = hc/λ
Where h is the Planck constant (6.626x10⁻³⁴ J.s), c is the light speed (3.00x10⁸ m/s), and λ is the wavelength of the photon.
The wavelength can be calculated by:
1/λ = R*(1/nf² - 1/ni²)
Where R is the Rydberg constant (1.097x10⁷ m⁻¹), nf is the final orbit, and ni the initial orbit. So:
1/λ = 1.097x10⁷ *(1/1² - 1/2²)
1/λ = 8.227x10⁶
λ = 1.215x10⁻⁷ m
So, the energy is:
E = (6.626x10⁻³⁴ * 3.00x10⁸)/(1.215x10⁻⁷)
E = 1.64x10⁻¹⁸ J