The answer is C 8.87*10^4 m/s (it shouldn't be m/s^2 though as velocity is in m/s)
Since you know the acceleration is 12 m/s^2, the initial velocity is 2.39*10^4 m/s and the time (you have to convert to seconds) is 5400 seconds, then you can use the equation
v = vo + at
When you plug in the values you get
v = 2.39*10^4 + 5400*12 . so v = 8.87*10^4 m/s. C is your answer.
Answer:
One of the primary advantages of thermal power is that the generation costs are extremely low. No fuel is needed to generate the power, and the minimal energy needed to pump water to the Earth's surface can be taken from the total energy yield.
Explanation:
Its 30 kg cause I got 30 kg dude.
In this problem, we apply the equation regarding kinematics expressed as vf^2 = v0^2 + 2as vf eventually becomes zero because the ball stops in the end. a = -9.8 m/s2s = 2 metres this time
This gives initial velocity, vo equal to 6.26m/s
now 6.26-(-8.85) = 15.11m/s
change in velocity/change in time = average acceleration 15.11/(12/1000) = 1259.167 m/s^2
Given the velocity-time graph of an object.
The slope of a velocity-time graph gives the acceleration acting on the object.
From the graph, we can see that the slope of the graph is zero. That is, the velocity of the object is constant and hence the net acceleration acting on the object is zero.
From Newton's second law, the net force acting on an object is given by the product of the mass of the object and its velocity. Therefore when the acceleration of the object is zero, the net force on the object is also zero.
Therefore the net force acting on the given object is zero. Hence, the correct answer is option A.