There are several many equations that are available to relate the distance,
speed, and time of a body moving vertically in gravity. Happily, the only one
I can always remember without looking it up happens to be the right one to
use for this question !
Distance = (1/2) x (gravity) x (time)²
3.8 m = (1/2) x (9.8 m/s²) x (time)²
Divide each side
by 4.9 m/s² :
(3.8 m) / (4.9 m/sec²) = (time)²
0.7755 sec² = time²
Square root
of each side:
0.88 second = time
Given that,
Current = 4 A
Sides of triangle = 50.0 cm, 120 cm and 130 cm
Magnetic field = 75.0 mT
Distance = 130 cm
We need to calculate the angle α
Using cosine law




We need to calculate the angle β
Using cosine law




We need to calculate the force on 130 cm side
Using formula of force



We need to calculate the force on 120 cm side
Using formula of force


The direction of force is out of page.
We need to calculate the force on 50 cm side
Using formula of force


The direction of force is into page.
Hence, The magnitude of the magnetic force on each of the three sides of the loop are 0 N, 0.1385 N and 0.1385 N.
Answer:
The right sphere is negatively charged, the left sphere is charged positively.
Explanation:
When a negatively charged rod is held above the top of left sphere, the rod will attract positive charges and repel negative charges. As the sphere are initially touching each other so positive charges from the both spheres will moves toward the rod. When we separate the spheres positive charges from right sphere have already moved toward the rod i.e. left sphere, creating a deficiency of positive charges in the right sphere and excessiveness of positive charges in left sphere , hence the right sphere will remain negatively charged and left sphere will remain positively charged.
Given :
Initial velocity , u = 0 m/s² .
To Find :
The acceleration of the cart.
Solution :
Since, acceleration is constant.
Using equation of motion :

Putting, t = 1 s and x = 4 m in above equation, we get :

Therefore, the acceleration of the cart is 8 m/s².