Answer:
a) A=0.125 m
b) T = 1.72 s
c) f= 0.58 Hz
Explanation:
a) As we are told that the maximum displacement from the equilibrium position was 0.125 m (from which it was released at zero initial speed), this is the amplitude of the resultant SHM, so, A=0.125 m
b) In order to find the period, we must get the total time needed to complete a full cycle (which means that the block must pass twice through the equilibrium point). We are told that at t=0.860 sec, the block has reached to the other end of the trajectory, and it has passed through the equilibrium point only once.
This means that the period must be exactly the double of this time:
T = 2*0. 860 sec = 1.72 sec.
c) In a SHM, the frequency is defined just as the inverse of the period (like in a uniform circular movement), so we can get the frequency f as follows:
f = 1/T = 1/ 1.72 s= 0.58 Hz
Black hole
hope it helped
Answer:
V = 48 Volts
Explanation:
Since we know that electric potential is a scalar quantity
So here total potential of a point is sum of potential due to each charge
It is given as

here we have potential due to 50 nC placed at y = 6 m



Now potential due to -80 nC charge placed at x = -4



Now potential due to 70 nC placed at y = -6 m



Now total potential at this point is given as

Answer:

Explanation:
The time the stone takes to fall can be calculated considering only the vertical component with the formula:

Taking the inital height as 0m and downward direction positive, since it departs from (vertical) rest we have:

Which gives us a time:

Horizontally, on that time the stone travelled a distance x=10m, which means its horizontal speed was:

Since <u>this speed is the tangential velocity</u> while whirling, the centripetal acceleration of the stone was:

Answer:


Explanation:
Given that:
- mass of plank,

- length of plank,

From the image we can visualize the given situation.
Consider the given plank to be mass-less and having a uniformly distributed mass of 1.5 kg per meter.
<u>Now in the balanced condition:</u>

.......................(1)

...........................(2)
is the force acted by the tailgate on the plank.
<u>Substitute the value from (2) into (1):</u>
is the force acted by the wall upon the plank.