where is the question in this ????
Answer:
0.47 m
Explanation:
= Number of vibrations = 37
= total time taken = 33 s
= time period of each vibration
frequency of vibration is given as
Hz
= distance traveled along the rope = 421 cm = 4.21 m
= time taken to travel the distance = 8 s
= speed of the wave
Speed of the wave is given as

= wavelength of the harmonic wave
wavelength of the harmonic wave is given as

Answer:
Explanation:
Given that,
Force applied to pedal F = 50N
Angular velocity ω = 10rev/s
We know that, 1rev = 2πrad
Then, ω = 10rev/s = 10×2π rad/s
ω = 20π rad/s
Length of pedal r = 30cm = 0.3m
Power?
Power is given as
P = τ×ω
We need to find the torque τ
τ = r × F
Since r is perpendicular to F
Then, τ = 0.3 × 50
τ = 15 Nm
Then,
P = τ×ω
P = 15 × 20π
P = 942.48 Watts
power delivered to the bicycle by the athlete is 942.48 W
Answer:
d) 1.2 mT
Explanation:
Here we want to find the magnitude of the magnetic field at a distance of 2.5 mm from the axis of the coaxial cable.
First of all, we observe that:
- The internal cylindrical conductor of radius 2 mm can be treated as a conductive wire placed at the axis of the cable, since here we are analyzing the field outside the radius of the conductor. The current flowing in this conductor is
I = 15 A
- The external conductor, of radius between 3 mm and 3.5 mm, does not contribute to the field at r = 2.5 mm, since 2.5 mm is situated before the inner shell of the conductor (at 3 mm).
Therefore, the net magnetic field is just given by the internal conductor. The magnetic field produced by a wire is given by

where
is the vacuum permeability
I = 15 A is the current in the conductor
r = 2.5 mm = 0.0025 m is the distance from the axis at which we want to calculate the field
Substituting, we find:
