<u><em>heyaaaaa</em></u>
<u><em>Momentum before Pb = momentum after Pa</em></u>
Pb = 75*6 - 100*8 = -350kgm/s = Pa = (75+100)V where V is the velocity of the combined mass of the two players after the collision.
<u><em>Velocity has magnitude (speed) and direction. V = -350/175 = -2m/s </em></u>
So the two players are moving at 2m/s in the direction the 100kg player was moving before the collision.
<em><u>I arbitrarily chose the direction of the smaller player as positive so the opposite direction (of the larger player) had to be negative. </u></em>
hope it helpssss!!!!!!
Answer:
I think it may be decreased, but i'm in 6th grade so-
Explanation:
Answer:
2.61 J
Explanation:
Since potential energy U = mgy where m = mass of object, g = acceleration due to gravity = 9.8 m/s² and y = height of object above the ground.
Now for the coffee mug, m= 0.422 kg and it is 0.63 m on a table, so it is 0.63 m above the ground. Thus, y = 0.63 m.
We compute U
U = mgy
= 0.422 kg × 9.8 m/s² × 0.63 m
= 2.605 J
≅ 2.61 J
So, the potential energy of the mug with respect to the floor is 2.61 J
Correct question is;
A thermal tap used in a certain apparatus consists of a silica rod which fits tightly inside an aluminium tube whose internal diameter is 8mm at 0°C.When the temperature is raised ,the fits is no longer exact. Calculate what change in temperature is necessary to produce a channel whose cross-sectional is equal to that of the tube of 1mm. (linear expansivity of silica = 8 × 10^(-6) /K and linear expansivity of aluminium = 26 × 10^(-6) /K).
Answer:
ΔT = 268.67K
Explanation:
We are given;
d1 = 8mm
d2 = 1mm
At standard temperature and pressure conditions, the temperature is 273K.
Thus; Initial temperature; T1 = 273K,
Using the combined gas law, we have;
P1×V1/T1 = P2×V2/T2
The pressure is constant and so P1 = P2. They will cancel out in the combined gas law to give:
V1/T1 = V2/T2
Now, volume of the tube is given by the formula;V = Area × height = Ah
Thus;
V1 = (πd1²/4)h
V2 = (π(d2)²/4)h
Thus;
(πd1²/4)h/T1 = (π(d2)²/4)h/T2
π, h and 4 will cancel out to give;
d1²/T1 = (d2)²/T2
T2 = ((d2)² × T1)/d1²
T2 = (1² × T1)/8²
T2 = 273/64
T2 = 4.23K
Therefore, Change in temperature is; ΔT = T2 - T1
ΔT = 273 - 4.23
ΔT = 268.67K
Thus, the temperature decreased to 268.67K