Alkali Metals (Group 1) elements experience an increase in the vigour of their reaction in water as they go down the group (as the atomic number increase). As such the most reactive Alkali Metal would be
FRANCIUM, which is at the base of Group One.
Quite frankly, you do not want Francium to react with water- that's a huge explosion on your hand.
Answer:
0.55 mol Au₂S₃
Explanation:
Normally, we would need a balanced equation with masses, moles, and molar masses, but we can get by with a partial equation, if the S atoms are balanced.
1. Gather all the information in one place:
M_r: 34.08
Au₂S₃ + … ⟶ 3H₂S + …
m/g: 56
2. Calculate the moles of H₂S
Moles of H₂S = 56 g H₂S × (34.08 g H₂S/1 mol H₂S)
= 1.64 mol H₂S
3. Calculate the moles of Au₂S₃
The molar ratio is 1 mol Au₂S₃/3 mol H₂S.
Moles of Au₂S₃ = 1.64 mol H₂S × (1 mol Au₂S₃/3 mol H₂S)
= 0.55 mol Au₂S₃
Boiling happens much faster! Boiling also takes place at the bottom of the fluid whereas evaporation takes place at the top.
Hope this helps!
Answer:
The groupings of elements in the periodic table reveal various trends, present in groups such as the alkali metals and noble gases, or the lanthanides and actinides. The periodic table can be used to find information on elements or predict the properties of as-of-yet undiscovered elements.
Explanation: