Answer:
(i) W = 8.918 N
(ii) ![V = 9.1 \times 10^{-4} m^3](https://tex.z-dn.net/?f=V%20%3D%209.1%20%5Ctimes%2010%5E%7B-4%7D%20m%5E3)
(iii) d = 9.1 cm
Explanation:
Part a)
As we know that weight of cube is given as
![W = mg](https://tex.z-dn.net/?f=W%20%3D%20mg)
![W = \rho V g](https://tex.z-dn.net/?f=W%20%3D%20%5Crho%20V%20g)
here we know that
![\rho = 0.91 g/cm^3](https://tex.z-dn.net/?f=%5Crho%20%3D%200.91%20g%2Fcm%5E3)
![Volume = L^3](https://tex.z-dn.net/?f=Volume%20%3D%20L%5E3)
![Volume = 10^3 = 1000 cm^3](https://tex.z-dn.net/?f=Volume%20%3D%2010%5E3%20%3D%201000%20cm%5E3)
now the mass of the ice cube is given as
![m = 0.91 \times 1000 = 910 g](https://tex.z-dn.net/?f=m%20%3D%200.91%20%5Ctimes%201000%20%3D%20910%20g)
now weight is given as
![W = 0.910 \times 9.8 = 8.918 N](https://tex.z-dn.net/?f=W%20%3D%200.910%20%5Ctimes%209.8%20%3D%208.918%20N)
Part b)
Weight of the liquid displaced must be equal to weight of the ice cube
Because as we know that force of buoyancy = weight of the of the liquid displaced
![W_{displaced} = 8.918 N](https://tex.z-dn.net/?f=W_%7Bdisplaced%7D%20%3D%208.918%20N)
So here volume displaced is given as
![\rho_{water}Vg = 8.918](https://tex.z-dn.net/?f=%5Crho_%7Bwater%7DVg%20%3D%208.918)
![1000(V)9.8 = 8.918](https://tex.z-dn.net/?f=1000%28V%299.8%20%3D%208.918)
![V = 9.1 \times 10^{-4} m^3](https://tex.z-dn.net/?f=V%20%3D%209.1%20%5Ctimes%2010%5E%7B-4%7D%20m%5E3)
Part c)
Let the cube is submerged by distance "d" inside water
So here displaced water weight is given as
![W = \rho_{water} (L^2 d) g](https://tex.z-dn.net/?f=W%20%3D%20%5Crho_%7Bwater%7D%20%28L%5E2%20d%29%20g)
![8.918 = 1000(0.10^2 \times d) 9.8](https://tex.z-dn.net/?f=8.918%20%3D%201000%280.10%5E2%20%5Ctimes%20d%29%209.8)
![d = 0.091 m](https://tex.z-dn.net/?f=d%20%3D%200.091%20m)
so it is submerged by d = 9.1 cm inside water