1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pickupchik [31]
4 years ago
10

Water ice has a density of 0.91 g/cm2, so it will float in liquid water. Imagine you have a cube of ice, 10 cm on a side. a. Wha

t is the cube's weight? b. What volume of liquid water must be displaced in order to support the floating cube? c. How much of the cube is under the surface of the water
Physics
1 answer:
Reptile [31]4 years ago
4 0

Answer:

(i) W = 8.918 N

(ii) V = 9.1 \times 10^{-4} m^3

(iii) d = 9.1 cm

Explanation:

Part a)

As we know that weight of cube is given as

W = mg

W = \rho V g

here we know that

\rho = 0.91 g/cm^3

Volume = L^3

Volume = 10^3 = 1000 cm^3

now the mass of the ice cube is given as

m = 0.91 \times 1000 = 910 g

now weight is given as

W = 0.910 \times 9.8 = 8.918 N

Part b)

Weight of the liquid displaced must be equal to weight of the ice cube

Because as we know that force of buoyancy = weight of the of the liquid displaced

W_{displaced} = 8.918 N

So here volume displaced is given as

\rho_{water}Vg = 8.918

1000(V)9.8 = 8.918

V = 9.1 \times 10^{-4} m^3

Part c)

Let the cube is submerged by distance "d" inside water

So here displaced water weight is given as

W = \rho_{water} (L^2 d) g

8.918 = 1000(0.10^2 \times d) 9.8

d = 0.091 m

so it is submerged by d = 9.1 cm inside water

You might be interested in
How do i make someone like me before they talk to me
pogonyaev

Be easy-going and be yourself.

8 0
3 years ago
Point charges q1=+2.00μC and q2=−2.00μC are placed at adjacent corners of a square for which the length of each side is 5.00 cm.
8_murik_8 [283]

The electric potential is a scalar unit, so we don't have to struggle with the vectors. The formula that gives electric potential is

V = \frac{1}{4\pi\epsilon_0}\frac{q}{r}

1) At point a, the electric potential is the sum of the potentials due to q1 and q2. So,

V_a = \frac{1}{4\pi\epsilon_0}\frac{q_1}{r_1} + \frac{1}{4\pi\epsilon_0}\frac{q_2}{r_2}

The distance from the center of the square to one of the corners is \sqrt2 L/2 = 0.035m

V_a = \frac{1}{4\pi\epsilon_0}\frac{2\times10^{-6}}{0.035} + \frac{1}{4\pi\epsilon_0}\frac{-2\times10^{-6}}{0.035} = 0

The answer is zero, because the point charges are at equal distances and their magnitudes are also equal but their directions are opposite.

2) V_b = \frac{1}{4\pi\epsilon_0}\frac{q_1}{r_1} + \frac{1}{4\pi\epsilon_0}\frac{q_2}{r_2}

r_1 = 0.05\sqrt2m\\r_2 = 0.05m

V_b = \frac{1}{4\pi\epsilon_0}\frac{2\times10^{-6}}{0.05\sqrt2} + \frac{1}{4\pi\epsilon_0}\frac{-2\times10^{-6}}{0.05}\\V_b = \frac{1}{4\pi\epsilon_0}\frac{2\times10^{-6}}{0.05} (\frac{1}{\sqrt2}-1)\\V_b = \frac{1}{4\pi\epsilon_0} (4\times 10^{-5})(-0.29)\\V_b = (-\frac{2.9\times10^{-6}}{\pi\epsilon_0})[tex]3) The work done on q3 by q1 and q2 is equal to the difference between  energies. This is the work-energy theorem. So,[tex]W = U_b - U_a

U = \frac{1}{4\pi\epsilon_0}\frac{q_1q_3}{r} = Vq_3

W = q_3(V_b - V_a) = q_3(V_b - 0)\\W = (-2\times10^{-6})(-\frac{2.9\times10^{-6}}{\pi\epsilon_0})\\W = \frac{5.8\times10^{-12}}{\pi\epsilon_0}

4 0
3 years ago
A mechanic uses a mechanical lift to raise a car. The car weighs 11,000 N. The lift raises the car 2.5 m.
KengaRu [80]

Potential energy = (weight) x (height)

After the car has been raised 2.5 meters, it has

                 (11,000) x (2.5) = 27,500 Joules

MORE potential energy than it had before it was lifted.

That's the energy that has to come from the work you do to lift it.

Since no mechanical process is ever 100% efficient, the work required
to accomplish this task is <em>at least  27,500 joules</em>.


5 0
3 years ago
Read 2 more answers
A 10 Kg ball is rolling at 2.5 m/s. It is then hit from behind with a bat that puts a 300 N force on the ball for a quick .3 sec
vazorg [7]

Answer: g. gg g rfrcdv

Explanation:

vfv g bygyb

7 0
3 years ago
Belly-flop Bernie dives from atop a tall flagpole into a swimming pool below. His potential energy at the top is 7000 J (relativ
elena55 [62]

Answer:

KE₂ = 6000 J

Explanation:

Given that

Potential energy at top U₁= 7000 J

Potential energy at bottom U₂= 1000 J

The kinetic energy at top ,KE₁= 0 J

Lets take kinetic energy at bottom level =  KE₂

Now from energy conservation

U₁+ KE₁= U₂+ KE₂

Now by putting the values

U₁+ KE₁= U₂+ KE₂

7000+ 0 = 1000+ KE₂

KE₂ = 7000 - 1000 J

KE₂ = 6000 J

Therefore the kinetic energy at bottom is 6000 J.

5 0
3 years ago
Other questions:
  • If I push on a wall with a force of 3500 N for 5 hours but the wall does not move, how much work have I done.
    9·1 answer
  • If a ball is dropped from rest, what is it’s velocity after 4 seconds
    13·1 answer
  • How many protons are in hydrogen -2
    6·1 answer
  • The main difference between speed and velocity involves
    13·1 answer
  • If you and your friend are riding your bikes side by side and your reference points are each other, are you in motion? Explain y
    7·1 answer
  • At highway speeds, a particular car is capable of an acceleration of about 1.6 m/s?. At this rate,
    11·1 answer
  • What are newtons laws?
    11·1 answer
  • Refraction or the bending of waves takes place when a light wave changes A) color. B) frequency. C) intensity. D) speed.
    7·2 answers
  • a planes average speed between two cities is 600 km/hr. if he takes 2.5 hrs. how far does the plane fly
    9·1 answer
  • You really have a thing for screaming outside. So on a day where the speed of sound is 343 m/s you go outside and scream at a wa
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!