Answer:
1. Find the molar mass of all the elements in the compound in grams per mole.
2. Find the molecular mass of the entire compound.
3. Divide the component's molar mass by the entire molecular mass.
4. You will now have a number between 0 and 1. Multiply it by 100% to get percent composition.
Explanation:
Answer:
The molarity of urea in this solution is 6.39 M.
Explanation:
Molarity (M) is <em>the number of moles of solute in 1 L of solution</em>; that is

To calculate the molality, we need to know the number of moles of urea and the volume of solution in liters. We assume 100 grams of solution.
Our first step is to calculate the moles of urea in 100 grams of the solution,
using the molar mass a conversion factor. The total moles of 100g of a 37.2 percent by mass solution is
60.06 g/mol ÷ 37.2 g = 0.619 mol
Now we need to calculate the volume of 100 grams of solution, and we use density as a conversion factor.
1.032 g/mL ÷ 100 g = 96.9 mL
This solution contains 0.619 moles of urea in 96.9 mL of solution. To express it in molarity, we need to calculate the moles present in 1000 mL (1 L) of the solution.
0.619 mol/96.9 mL × 1000 mL= 6.39 M
Therefore, the molarity of the solution is 6.39 M.
Answer:
a. 1.21M
b. 0.119M
c. 0.00496M
Explanation:
Molarity, M, is an unit of concentration defined as the ratio between moles of solute and liters of solution:
a. 4.35 mol LiCl / 3.60L = 1.21M
b. 29.43gC6H12O6 * (1mol / 180.16g) = 0.1634moles / 1.37L = 0.119M
<em>Molar mass C6H12O6: 180.16g/mol</em>
c. 34.5mg NaCl = 0.0345g * (1mol / 58.44g) = 5.9x10⁻⁴moles / 0.1191L = 0.00496M