Average atomic mass listed for nitrogen in the periodic table is 14
Hope this helps!
Answer:
The answer is 465.6 mg of MgI₂ to be added.
Explanation:
We find the mole of ion I⁻ in the final solution
C = n/V -> n = C x V = 0.2577 (L) x 0.1 (mol/L) = 0.02577 mol
But in the initial solution, there was 0.087 M KI, which can be converted into mole same as above calculation, equal to 0.02242 mol.
So we need to add an addition amount of 0.02577 - 0.02242 = 0.00335 mol of I⁻. But each molecule of MgI₂ yields two ions of I⁻, so we need to divide 0.00335 by 2 to find the mole of MgI₂, which then is 0.001675 mol.
Hence, the weight of MgI₂ must be added is
Weight of MgI₂ = 0.001675 mol x 278 g/mol = 0.4656 g = 465.6 mg
Answer:
In the final solution, the concentration of sucrose is 0.126 M
Explanation:
Hi there!
The number of moles of solute in the volume taken from the more concentrated solution will be equal to the number of moles of solute in the diluted solution. Then, the concentration of the first solution can be calculated using the following equation:
Ci · Vi = Cf · Vf
Where:
Ci = concentration of the original solution
Vi = volume of the solution taken to prepare the more diluted solution.
Cf = concentration of the more diluted solution.
Vf = volume of the more diluted solution.
For the first dillution:
26.6 ml · 2.50 M = 50.0 ml · Cf
Cf = 26.6 ml · 2.50 M / 50.0 ml
Cf = 1.33 M
For the second dilution:
16.0 ml · 1.33 M = 45.0 ml · Cf
Cf = 16.0 ml · 1.33 M / 45.0 ml
Cf = 0.473 M
For the third dilution:
20.0 ml · 0.473 M = 75.0 ml · Cf
Cf = 20.0 ml · 0.473 M / 75.0 ml
Cf = 0.126 M
In the final solution, the concentration of sucrose is 0.126 M
Answer:
Lithium hydroxide is a base.
Carbon dioxide is the anhydride of the carbonic acid, H₂CO₃.
Therefore, the reaction awaited is a typical neutralization reaction with the formation of a salt and water.
2LiOH + CO₂ → Li₂CO₃ + H₂O
So, 2*20 = 40 moles of LiOH react with 20 moles of CO₂.
Molar Mass of LiOH = 23.95 g/mol
So, 40 * 23.95 = 958 g
The answer is: A) Na3PO4 + 3KOH → 3NaOH + K3PO4, because K retains the same charge throughout the reaction.
This chemical reaction is double displacement reaction - cations (K⁺ and Na⁺) and anions (PO₄³⁻⁻ and OH⁻) of the two reactants switch places and form two new compounds.
Na₃PO₄ is sodium phosphate.
KOH is potassium hydroxide.
NaOH is sodium hydroxide.
K₃PO₄ is potassium phosphate.
According to the mass conservation law, there are same number of atoms on both side of balanced chemical reaction.