Answer:
(a)
(b) It won't hit
(c) 110 m
Explanation:
(a) the car velocity is the initial velocity (at rest so 0) plus product of acceleration and time t1

(b) The velocity of the car before the driver begins braking is

The driver brakes hard and come to rest for t2 = 5s. This means the deceleration of the driver during braking process is

We can use the following equation of motion to calculate how far the car has travel since braking to stop


Also the distance from start to where the driver starts braking is

So the total distance from rest to stop is 352 + 88 = 440 m < 550 m so the car won't hit the limb
(c) The distance from the limb to where the car stops is 550 - 440 = 110 m
Answer:
The top of the mountian is colder
Explanation:
As air rises, the pressure decreases. It is this lower pressure at higher altitudes that causes the temperature to be colder on top of a mountain than at sea level.
Answer:
a. k = (1/k₁ + 1/k₂)⁻¹ b. k = (1/k₁ + 1/k₂ + 1/k₃)⁻¹
Explanation:
Since only one force F acts, the force on spring with spring constant k₁ is F = k₁x₁ where x₁ is its extension
the force on spring with spring constant k₂ is F = k₂x₂ where x₁ is its extension
Let F = kx be the force on the equivalent spring with spring constant k and extension x.
The total extension , x = x₁ + x₂
x = F/k = F/k₁ + F/k₂
1/k = 1/k₁ + 1/k₂
k = (1/k₁ + 1/k₂)⁻¹
B
The force on spring with spring constant k₃ is F = k₃x₃ where x₃ is its extension
Let F = kx be the force on the equivalent spring with spring constant k and extension x.
The total extension , x = x₁ + x₂ + x₃
x = F/k = F/k₁ + F/k₂ + F/k₃
1/k = 1/k₁ + 1/k₂ + 1/k₃
k = (1/k₁ + 1/k₂ + 1/k₃)⁻¹
The new pressure P2 is 2.48 atmosphere.
<u>Explanation:</u>
Here, the one of the product of pressure and volume is equal to the products of pressure and volume of other.
By using Boyles's law,
pressure is inversely proportional to volume,
P1 V1 = P2 V2
where P1, V1 represents the first pressure and volume,
P2, V2 represents the second pressure and volume
P2 = (P1 V1) / V2
= (1.75
8.8) / 6.2
P2 = 2.48 atmosphere.