Answer:
Electrolytes are substances that can ionize in water. They could be acids, bases or salts as long as they give ions when they dissolve in water.
Explanation:
- <em>Strong electrolytes</em> completely ionize when dissolved in water, leaving no neutral molecules. The strong electrolytes here are:<u> salt water</u>, <u>baking soda (NaHCO3) solution.</u>
- <em>Weak electrolytes</em> do not completely dissociate in solution, and hence have a low ionic yield. Examples of this would be<u> vinegar </u>and <u>bleach </u>(which could be sodium hypochlorite or chlorine, which are weakly dissociated).
- <em>Non-electrolytes </em>will remain as molecules and are not ionized in water at all. In this case, <u>sugar solution is a non-electrolytes</u>, even though sugar dissolves in water, but it remains as a whole molecule and not ions.
<span>Avogadro's number
represents the number of units in one mole of any substance. This has the value
of 6.022 x 10^23 units / mole. This number can be used to convert the number of
atoms or molecules into number of moles. We calculate as follows:
0.340 mol Br2 ( </span>6.022 x 10^23 molecules / mol ) = 2.05 x 10^23 molecules
Answer:
4.8x10⁻³ Liters are required
Explanation:
Molarity is an unit of concentration in chemistry defined as the ratio between moles of solute (In this case, silver nitrate) and liters of solution.
The 0.50M solution contains 0.50 moles of silver nitrate per liter of solution.
To provide 2.4x10⁻³ moles Silver nitrate are required:
2.4x10⁻³ moles * (1L / 0.50 moles) =
<h3>4.8x10⁻³ Liters are required</h3>
Answer:
sulphuric is a strong acid
Explanation:
Sulphuric is a strong acid because it completely ionises in water while acetic acid partially ionises in water