<h2>MARK BRAINLIEST</h2>
For this assignment, you will develop several models that show how light waves and mechanical waves are reflected, absorbed, or transmitted through various materials. For each model, you will write a brief description of the interaction between the wave and the material. You will also compose two <u><em>typewritten</em></u> paragraphs. The first will compare and contrast light waves interacting with different materials. The second will explain why materials with certain properties are well suited for particular functions.
<h2><u>Background Information</u></h2>
A wave is any disturbance that carries energy from one place to another. There are two different types of waves: mechanical and electromagnetic. A mechanical wave carries energy through matter. Energy is transferred through vibrating particles of matter. Examples of mechanical waves include ocean waves, sound waves, and seismic waves. Like a mechanical wave, an electromagnetic wave can also carry energy through matter. However, unlike a mechanical wave, an electromagnetic wave does not need particles of matter to carry energy. Examples of electromagnetic waves include microwaves, visible light, X-rays, and radiation from the Sun.
Answer:
The the speed of the car is 26.91 m/s.
Explanation:
Given that,
distance d = 88 m
Kinetic friction = 0.42
We need to calculate the the speed of the car
Using the work-energy principle
work done = change in kinetic energy
Put the value into the formula
Hence, The the speed of the car is 26.91 m/s.
Answer:
The mass of the person would remain 600kg.
Explanation:
mass refers to the amount of matter in a particular object. therefore even though the moon has less gravitational force than the Earths, it still would have the same mass since the person is made up of the same amount of matter on Earth and in the moon.
when asked about weight, it would be 1000N. but in mass , same 600kg.
Answer:
0.1 s
Explanation:
The net force on the log is F - f = ma where F = force due to winch = 2850 N, f = kinetic frictional force = μmg where μ = coefficient of kinetic friction between log and ground = 0.45, m = mass of log = 300 kg and g = acceleration due to gravity = 9.8 m/s² and a = acceleration of log
So F - f = ma
F - μmg = ma
F/m - μg = a
So, substituting the values of the variables into the equation, we have
a = F/m - μg
a = 2850 N/300 kg - 0.45 × 9.8 m/s²
a = 9.5 m/s² - 4.41 m/s²
a = 5.09 m/s²
Since acceleration, a = (v - u)/t where u = initial velocity of log = 0 m/s (since it was a rest before being pulled out of the ditch), v = final velocity of log = 0.5 m/s and t = time taken for the log to reach a speed of 0.5 m/s.
So, making t subject of the formula, we have
t = (v - u)/a
substituting the values of the variables into the equation, we have
t = (v - u)/a
t = (0.5 m/s - 0 m/s)/5.09 m/s²
t = 0.5 m/s ÷ 5.09 m/s²
t = 0.098 s
t ≅ 0.1 s