<span>All the statements about the atmosphere are correct except statement 2. The atmosphere has effects on landforms and does affect the biosphere. For instance, landforms are constantly been broken down and renew by the process of weathering, erosion, etc. The atmosphere plays principal roles in these processes. </span>
Answer:
η = 58.8%
Explanation:
Work is defined as the force applied by the distance traveled by the body.

where:
W = work [J] (units of joules)
F = force = 294 [N]
d = distance = 5 [m]
![W = 294*5\\W = 1470 [J]\\](https://tex.z-dn.net/?f=W%20%3D%20294%2A5%5C%5CW%20%3D%201470%20%5BJ%5D%5C%5C)
Efficiency is defined as the energy required to perform an activity in relation to the energy actually added to perform some activity. This can be better understood by means of the following equation.

Winds are deflected to the right as they move into a low pressure area in the Northern Hemisphere.
<u>Explanation:</u>
Winds decide the motion of ocean currents which forms the surface waves in the Earth's atmosphere to maintain the pressure region. The motion of ocean currents is based on Coriolis force which states the direction of motion of an object in a rotating system.
In the case of Earth, the Coriolis force has an effect on the ocean currents which are deflected from maximum to minimum pressure region in a curved path. So the winds formed by the ocean currents will generally get deflected at the right as they move into a low pressure area at the Northern Hemisphere from the high pressure region.
Answer:
404K
Explanation:
Data given, Kinetic Energy.K.E=8.37*10^-21J
Note: as the temperature of a is increase, the rate of random movement will increase, hence leading to more collision per unit time. Hence we can say that the relationship between the kinetic energy and the temperature is a direct variation.
This relationship can be expressed as

where K is a constant of value 1.38*10^-23
Hence if we substitute the values, we arrive at

converting to degree we have 