<span>when it returns to its original level after encountering air resistance, its kinetic energy is
decreased.
In fact, part of the energy has been dissipated due to the air resistance.
The mechanical energy of the ball as it starts the motion is:
</span>

<span>where K is the kinetic energy, and where there is no potential energy since we use the initial height of the ball as reference level.
If there is no air resistance, this total energy is conserved, therefore when the ball returns to its original height, the kinetic energy will still be 100 J. However, because of the presence of the air resistance, the total mechanical energy is not conserved, and part of the total energy of the ball has been dissipated through the air. Therefore, when the ball returns to its original level, the kinetic energy will be less than 100 J.</span>
Answer:
Explanation:
From the given information:
We know that the thin spherical shell is on a uniform surface which implies that both the inside and outside the charge of the sphere are equal, Then
The volume charge distribution relates to the radial direction at r = R
∴



To find the constant k, we examine the total charge Q which is:


∴



Thus;




Hence, from equation (1), if k = 


To verify the units:

↓ ↓ ↓
c/m³ c/m³ × 1/m
Thus, the units are verified.
The integrated charge Q



since 

I uploaded the answer to
a file hosting. Here's link:
bit.
ly/3gVQKw3
Answer:

Explanation:
Radius of the pollen is given as

Volume of the pollen is given as



mass of the pollen is given as


so weight of the pollen is given as



Now electric force on the pollen is given



now ratio of electric force and weight is given as

