Given the molar mass of Nitrogen is 14.01g/mol you can use that to solve for the moles of nitrogen.
0.235g(1mol/14.01g) = .0168 moles.
Answer:
The answer is D."We see whole images, while feature detectors detect specific"
Answer:In determining the energy of activation, why was it prudent to run the slowest trial done at room temperature in the hot water bath and the fastest trial done at room temperature in the cold water bath?
Explanation:
Answer:Label the parts of this wave.
A:
✔ crest
B:
✔ amplitude
C:
✔ trough
D:
✔ wavelength
Explanation:
To solve the problem, we assume the sample to be ideal. Then, we use the ideal gas equation which is expressed as PV = nRT. From the first condition of the nitrogen gas sample, we calculate the number of moles.
n = PV / RT
n = (98.7x 10^3 Pa x 0.01 m^3) / (8.314 Pa m^3/ mol K) x 298.15 K
n = 0.40 mol N2
At the second condition, the number of moles stays the same however pressure and temperature was changed. So, the new volume is calculated as follows:
V = nRT / P
V = 0.40 x 8.314 x 293.15 / 102.7 x 10^3
V = 9.49 x 10^-3 m^3 or 9.49 L