Can you use a calculator? If so, demos works great for problems like these!
Answer:
Gravitational potential energy may be converted to other forms of energy, such as kinetic energy. If we release the mass, gravitational force will do an amount of work equal to mgh on it, thereby increasing its kinetic energy by that same amount (by the work-energy theorem).
Explanation:
I think this should be true...
As a comet gets closer to the sun, the ice on the surface of the nucleus begins turning into gas, forming a cloud known as the coma. ... Since comet tails are shaped by sunlight and the solar wind, they always point away from the sun.
Answer: option B. The kinetic energy of gas molecules is directly proportional to the Kelvin temperature of the gas.
Explanation:
The kinetic theory of gases explains the behavior and properties of gases from a molecular perspective.
Specifically and explicity, the kinetic theory of gases states that gases are constituted by particles (molecules) and that the average kinetic energy of the particles is proportional to the absolute temperature (Kelvin scale) of the gas. Furthermore, the temperature of all the (ideal) gases is the same at a given temperature.
Hence, you know that the higher the temperature of the gas, the higher the kinetic energy and the average speed of the molecules.
Other postulates of the kinetic theory of gases are that: i) the volume of the particles is neglectible; ii) the particles do not exhibit intermolecular attraction or repulsion; iii) the particles are in continuous random motion in straight paths, until they collide with other particles or the walls of the vessel, and iv) the collisions are elastic (the energy is conserved).