The balanced chemical reaction is expressed as:
M + F2 = MF2
To determine the moles of the element fluorine present in the product, we need to determine the moles of the product formed from the reaction and relate this value to the ratio of the elements in MF2. We do as follows:
moles MF2 produced = 0.600 mol M ( 1 mol MF2 / 1 mol M ) = 0.600 mol MF2
molar mass MF2 = 46.8 g MF2 / 0.6 mol MF2 = 78 g/mol
moles MF2 = 46.8 g ( 1 mol / 78 g ) = 0.6 mol
moles F = 0.6 mol MF2 ( 2 mol F / 1 mol MF2 ) = 1.2 moles F
Number 1: (A.)
Number 2: (A.)
Number 3: (B.)
I'm probably wrong but that is what i think
Protons and neutrons are in the center of the atom, making up the nucleus. The charge on the proton and electron are exactly the same size but opposite. Neutrons have no charge.
The valence electron determines whether an ionic or covalent bond develops between two atoms.
An atom's outer shell electrons, known as valence electrons, can take a role in the creation of chemical bonds. When two atoms establish a single covalent bond, normally, both atoms contribute one valence electron to create a shared pair.
Ionic bonds, also known as electrovalent bonds, are a type of linkage created in a chemical molecule by the electrostatic attraction of ions with opposing charges. When one atom's valence (outermost) electrons are permanently transferred to another atom, a bond of this kind is created. The one or two and three are lost and gained in ionic bond formation, but particles with four valence electrons are neither lost nor gained. The four electrons are generally shared to form a covalent bond.
Hence, the valence electron decides the type of the bond.
To know more about Electrostatic attraction.
brainly.com/question/14889552
#SPJ4