<span>There are several factors that can influence sonic booms - weight, size, and shape of the aircraft or vehicle, plus its altitude, attitude and flight path, and weather or atmospheric conditions.</span>
Answer:
(for small oscillations)
Explanation:
The total energy of the pendulum is equal to:

For small oscillations, the equation can be re-arranged into the following form:

Where:
, measured in radians.
If the amplitude of pendulum oscillations is increase by a factor of 4, the angle of oscillation is
and the total energy of the pendulum is:

The factor of change is:


1) Refraction
2)Reflection
3)Concave
4)Convex
I took the test and got this right so you can believe me :)
Hope this helps
<span>g = GMe/Re^2, where Re = Radius of earth (6360km), G = 6.67x10^-11 Nm^2/kg^2, and Me = Mass of earth. On the earth's surface, g = 9.81 m/s^2, so the radius of your orbit is:
R = Re * sqrt (9.81 m/s^2 / 9.00 m/s^2) = 6640km
here, the speed of the satellite is:
v = sqrt(R*9.00m/s^2) = 7730 m/s
the time it would take the satellite to complete one full rotation is:
T = 2*pi*R/v = 5397 s * 1h/3600s = 1.50 h
Hope it help i know it's long and may be confusing but if you have any more questions regarding this topic just hmu! :)</span>
Answer:
Explanation:
Let m be mass of each sphere and θ be angle, string makes with vertex in equilibrium.
Let T be tension in the hanging string
T cosθ = mg ( for balancing in vertical direction )
for balancing in horizontal direction
Tsinθ = F ( F is force of repulsion between two charges sphere)
Dividing the two equations
Tanθ = F / mg
tan17 = F / (7.1 x 10⁻³ x 9.8)
F = 21.27 x 10⁻³ N
if q be charge on each sphere , force of repulsion between the two
F = k q x q / r² ( r is distance between two sphere , r = 2 x .7 x sin17 = .41 m )
21.27 x 10⁻³ = (9 X 10⁹ x q²) / .41²
q² = .3973 x 10⁻¹²
q = .63 x 10⁻⁶ C
no of electrons required = q / charge on a single electron
= .63 x 10⁻⁶ / 1.6 x 10⁻¹⁹
= .39375 x 10¹³
3.9375 x 10¹² .