<em><u>A</u></em><em><u>. </u></em><em><u>R</u></em><em><u>E</u></em><em><u>D</u></em><em><u> </u></em><em><u>W</u></em><em><u>A</u></em><em><u>V</u></em><em><u>E</u></em><em><u>S</u></em><em><u> </u></em><em><u>I</u></em><em><u>S</u></em><em><u> </u></em><em><u>N</u></em><em><u>O</u></em><em><u>T</u></em><em><u> </u></em><em><u>A</u></em><em><u> </u></em><em><u>L</u></em><em><u>I</u></em><em><u>G</u></em><em><u>H</u></em><em><u>T</u></em><em><u> </u></em><em><u>W</u></em><em><u>A</u></em><em><u>V</u></em><em><u>E</u></em><em><u> </u></em><em><u>B</u></em><em><u>E</u></em><em><u>C</u></em><em><u>A</u></em><em><u>U</u></em><em><u>S</u></em><em><u>E</u></em><em><u> </u></em><em><u>THE</u></em>RE<em><u> </u></em><em><u>I</u></em><em><u>S</u></em><em><u> </u></em><em><u>N</u></em><em><u>O</u></em><em><u>T</u></em><em><u> </u></em><em><u>RED</u></em><em><u> </u></em><em><u>W</u></em><em><u>A</u></em><em><u>V</u></em><em><u>E</u></em><em><u>.</u></em>
<em><u>A</u></em><em><u>L</u></em><em><u>S</u></em><em><u>O</u></em><em><u> </u></em><em><u>I</u></em><em><u>F</u></em><em><u> </u></em><em><u>Y</u></em><em><u>O</u></em><em><u>U</u></em><em><u> </u></em><em><u>D</u></em><em><u>O</u></em><em><u>N</u></em><em><u>T</u></em><em><u> </u></em><em><u>B</u></em><em><u>E</u></em><em><u>L</u></em><em><u>I</u></em><em><u>E</u></em><em><u>V</u></em><em><u>E</u></em><em><u> </u></em><em><u>S</u></em><em><u>E</u></em><em><u>A</u></em><em><u>R</u></em><em><u>C</u></em><em><u>H</u></em><em><u> </u></em><em><u>I</u></em><em><u>T</u></em><em><u> </u></em><em><u>F</u></em><em><u>R</u></em><em><u>O</u></em><em><u>M</u></em><em><u> </u></em><em><u>G</u></em><em><u>O</u></em><em><u>O</u></em><em><u>G</u></em><em><u>L</u></em><em><u>E</u></em>
Answer:
<em>k = 25.18 N/m</em>
Explanation:
<u>Simple Harmonic Oscillator</u>
It consists of a weight attached to one end of a spring being allowed to move forth and back.
If m is the mass of the weight and k is the constant of the spring, the period of the oscillation is given by:

If the period is known, we can find the value of the constant by solving for k:

Substituting the given values m=5 Kg and T=2.8 seconds:

k = 25.18 N/m
We will use formula for the orbital velocity of Venus, which is v = 35.02 km/s.
An average distance to the Sun ( In kilometers ) is:
R = 0.723 * 149,579,871 km= 108,150,260 km.
Than we will calculate the orbital period ( T ).
v = 2 π R / T
T = 2 π R / v
T = 2 * 3.14 * 108,150,260 km / 126,072 km/s
T = 5389.75 s ≈ <span>224.5 days
The orbital period of Venus is approximately 224.5 days.</span>
Answer:
A.) 355 m/s
B.) 0.71 m
C.) 500Hz
Explanation:
Given that a police car is traveling due east at a speed of 15.0 m/s relative to the earth. You are in a convertible following behind the police car. Your car is also moving due east at 15.0 m/s relative to the earth, so the speed of the police car relative to you is zero. The siren of the police car is emitting sound of frequency 500 Hz. The speed of sound in the still air is 340 m/s
a.) What is the speed of the sound waves relative to you?
Since the car is moving away from the observer, the relative velocity will be:
Relative velocity = 340 + 15
Relative velocity = 355 m/s
b.) What is the wavelength of the sound waves at your location?
Using the wave speed formula
V = frequency × wavelength
Make wavelength the subject of formula.
Wavelength = Velocity / frequency
Wavelength = 355/500
Wavelength = 0.71 m
c.) What frequency do you detect?
Fo = Fs ( C + V ) / ( C + v )
Fo = Fs
That is, the frequency of the observer will be equal to the frequency of the source.
Therefore, Fo = 500Hz
Answer:
B. The force would be the same in both cases.
Explanation:
As we know that the force is defined as the rate of change in momentum of the system
So here we will have

so in both the cases the change in the momentum of the car will be same

also the time interval is given same in both the cases
so here we can say

so force will be same on the car in both the cases