Answer:
V₁ = 6 V
, V₂ = V₃ = 3 V
Explanation:
To solve this circuit we must remember that there are two fundamental types of construction in series and parallel.
* a serial circuit there is only one path for current
in this circuit the constant current in the entire circuit and the voltage is the sum of the voltage of each term
* Parallel circuit in this there are two or more paths for the current
in this circuit the voltage is constant and the east is divided between each branch
with these principles let's analyze the proposed circuit
The DC battery is in parallel with resistor R1 and the equivalent of the other branch,
as in a parallel circuit the voltage is constant
V₁ = 6 V
in the other branch (23) it forms a series construction, where the current is constant
6 = iR₂ + iR₃
as they indicate that each resistance has the same value
6 = 2 iR
V = V₂ = V₃ = 3 V
Answer:
5.09 x 10⁵ Nm²/C
Explanation:
The electric flux φ through a planar area is defined as the electric field Ε times the component of the area Α perpendicular to the field. i.e
φ = E A
From the question;
E = (8.0j + 2.0k) ✕ 10³ N/C
r = radius of the circular area = 9.0m
A = area of a circle = π r² [Take π = 3.142]
A = 3.142 x 9² = 254.502m²
Now, since the area lies in the x-y plane, only the z-component of the electric field is responsible for the electric flux through the circular area.
Therefore;
φ = (2.0) x 10³ x 254.502
φ = 5.09 x 10⁵ Nm²/C
The electric flux is 5.09 x 10⁵ Nm²/C
Well, 0.1 is actually less than 0.7, but I understand what you're asking.
The coefficient of friction describes the relationship between two surfaces
that are sliding by each other. The higher the coefficient of friction is, the
'rougher' the meeting is, and the harder it is for one to slide over the other.
A skate blade against ice has a very low coefficient of friction. Sandpaper
against blue jeans has a high coefficient of friction.
A higher coefficient of friction means that when one thing is sliding over
the other one, friction robs more energy from the motion. It's harder to
push one thing over the other one, and when you let go, the moving one
slows down and stops sooner.
Air resistance is actually an example of friction. It prevents falling things
from falling as fast as they would if there were no air. The coefficient of
friction when something moves through air is pretty low. If the same
object were trying to move through molasses or honey, the coefficient
of friction would be greater.
Friction robs energy, and turns it into heat. So, especially in machinery with
moving parts, we want to make the coefficient of friction between the moving parts
as small as possible. That's what the OIL in a car's engine is for.
I think the answer is "<span>The ball that went out of the park shows more work because the distance was greater."</span>
Answer:
calculated the speed of light over a short distance
Explanation:
Albert Michelson <u>was an American physicist who conducted an experiment regarding the speed of light in the air 1880s.</u> He believed in the existence of "aether," a field of space that is deemed necessary for transporting electromagnetic forces. In order to do this, he setup a device in order to accurately measure the speed of light in in aether. His device is now known as <u>"Michelson interferometer." </u><em>The result was actually negative. </em>
In order to make his experiment even more accurate, he collaborated with Edward Morley, a famous American scientist. Although the result failed, together, they were able to improve and come with the a standard length of light. This calculated the speed of light over a short distance, which was the significant result of Michelson's experiment.
Thus, this explains the answer.