31.3m/s
Explanation:
Given parameters:
Mass of rock = 40kg
Height of cliff = 50m
Unknown:
Speed of rock when it hits ground = ?
Solution:
We are going to use the appropriate motion equation to solve this problem
The rock is falling with the aid of gravitational force. The force is causing it to accelerate with an amount of velocity.
Using;
V² = U² + 2gH
V = unknown velocity
U = initial velocity = O
g = acceleration due to gravity = 9.8m/s²
H = height of fall
since the initial velocity of the bodyg is 0
V² = 2gH
V= √2gH = √2 x 9.8 x 50 = 31.3m/s
learn more:
Velocity brainly.com/question/4460262
#learnwithBrainly
<h3>Question:</h3>
How to find g (acceleration due to gravity)
<h3>Solution:</h3>
We know,
Acceleration due to gravity (g)

where, G = Gravitational constant

M = Mass of the earth

R = Radius of the earth

Putting these values of G, M and R in the above formula, we get

So, the value of acceleration due to gravity is

Hope it helps.
Do comment if you have any query.
Answer:
A
Explanation:
A. The pencil is on the table in broad daylight
Answer:
A blackbody, or Planckian radiator, is a cavity within a heated material from which heat cannot escape. No matter what the material, the walls of the cavity exhibit a characteristic spectral emission, which is a function of its temperature.
Example:
Emission from a blackbody is temperature dependent and at high temperature, a blackbody will emit a spectrum of photon energies that span the visible range, and therefore it will appear white. The Sun is an example of a high-temperature blackbody.
His. Curbs I b h bs. H b u b