So momentum is just velocity times mass, this means Momentum = Velocity x Mass.
We can rearrange this to be Velocity = Momentum/Mass.
Since we know momentum and mass we can now solve.
Velocity = 264/(45+2.5)
= 5.56 m/s
The category of galaxy which does not have a distinctive shape is D. an irregular galaxy.
A spiral galaxy has a spiral shape, an elliptical galaxy has an elliptical shape, and a barred-spiral galaxy has a barred-spiral shape. The only galaxy type which does not have a constant shape is an irregular galaxy.
Answer:
The upper limit on the flow rate = 39.46 ft³/hr
Explanation:
Using Ergun Equation to calculate the pressure drop across packed bed;
we have:

where;
L = length of the bed
= viscosity
U = superficial velocity
= void fraction
dp = equivalent spherical diameter of bed material (m)
= liquid density (kg/m³)
However, since U ∝ Q and all parameters are constant ; we can write our equation to be :
ΔP = AQ + BQ²
where;
ΔP = pressure drop
Q = flow rate
Given that:
9.6 = A12 + B12²
Then
12A + 144B = 9.6 -------------- equation (1)
24A + 576B = 24.1 --------------- equation (2)
Using elimination methos; from equation (1); we first multiply it by 2 and then subtract it from equation 2 afterwards ; So
288 B = 4.9
B = 0.017014
From equation (1)
12A + 144B = 9.6
12A + 144(0.017014) = 9.6
12 A = 9.6 - 144(0.017014)

A = 0.5958
Thus;
ΔP = AQ + BQ²
Given that ΔP = 50 psi
Then
50 = 0.5958 Q + 0.017014 Q²
Dividing by the smallest value and then rearranging to a form of quadratic equation; we have;
Q² + 35.02Q - 2938.8 = 0
Solving the quadratic equation and taking consideration of the positive value for the upper limit of the flow rate ;
Q = 39.46 ft³/hr
Answer:
(A). The current in the circuit is 19.25 mA.
(B). The store energy in the inductor is 7.04 μJ.
Explanation:
Given that,
Voltage = 8.2 V
Inductor = 38 mH
Resistance = 150 Ω
Time t = 0.110 ms
The battery has negligible internal resistance, so that the total resistance in the circuit is 150 ohms. Then use this equation for current at time t in terms of inductance
We need to calculate the current
Using formula of current

Put the value into the formula



(B). We need to calculate the store energy in the inductor
Using formula of energy

Put the value into the formula


{tex]E=7.04\ \mu J[/tex]
Hence, (A). The current in the circuit is 19.25 mA.
(B). The store energy in the inductor is 7.04 μJ.