Answer:
17 m/s
Explanation:
Using formula a = (v-u) /t
acceleration a = -1.5 m/s2
final velocity v = unknown
initial velocity u = 32 m/s
time t = 10s
-1.5 = (v-32)/10
-15 = v - 32
-15 + 32 = v
v = 17 m/s
Distance , d = a+b

The unit of d is in meter and t is in seconds.
So the unit of a a must be meter.
Now we have unit of b

is meter.
So unit of b*

= meter
Unit of b = meter/

So unit of a = m and unit of b = m/

.
The Cochlea is filled with a fluid that moves in response to the vibrations from the oval window. As the fluid moves, 25,000 nerve endings are set into motion. These nerve endings transform the vibrations into electrical impulses that then travel along the eighth cranial nerve (auditory nerve) to the brain.
All three windows are the same size.
A has 10 complete waves visible through the window. B has 3, and C has 4.
So A must have the smallest wavelengths.
Answer:
60 m
Explanation:
After 3 seconds of travel at 20 m/s, the projectile is 3·20 = 60 meters horizontally from the cannon.
__
The vertical height after 3 seconds is 0.9 m, so the straight-line distance from cannon to target is √(60^2 +0.9^2) ≈ 60.007 meters.