1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
scZoUnD [109]
2 years ago
5

A cylinder of mass m is free to slide in a vertical tube. The kinetic friction force between the cylinder and the walls of the t

ube has magnitude f. You attach the upper end of a lightweight vertical spring of force constant k to the cap at the top of the tube, and attach the lower end of the spring to the top of the cylinder. Initially the cylinder is at rest and the spring is relaxed. You then release the cylinder. What vertical distance will the cylinder descend before it comes momentarily to rest? Express your answer in terms of the variables m, f, and constants g, k.
Physics
1 answer:
Lapatulllka [165]2 years ago
7 0

Answer:

x = (mg-f)/k

Explanation:

there are three forces acting on cylinder in a tube, (1) force due to spring = -kx (2) force due to friction = f (3) force due to gravity.

we want to calculate an instant when all three forces acting on mass cancel and there is 0 net force  and cylinder momentiraly comes to stop.

let's write it in mathematics.

kx+f-mg=0 (kx is positive because it is upwards and that is how we have setup our coordinate axis in this problem).

solving for x gives.

x = (mg-f)/k.

You might be interested in
What do scientists use to explain an atom or the universe?
slega [8]
Scientists use theories to explain these things

7 0
3 years ago
Two bicyclist, originally separated by a distance of 20 miles, are each traveling at a uniform speed of 10 miles per hour toward
Radda [10]

Answer:

D = 25 miles

Explanation:

To solve this problem, we just need to know how much time it took both bicyclists to collide and that will be the same amount of time that the bee flew at 25miles per hour. With those values we could calculate the distance it traveled.

Since both bicyclists collide, we know that Xa=Xb, so:

Xa = V*t = 10*t     and    Xb = 20 - V*t = 20 - 10*t

10*t = 20 - 10*t      Solving for t:

t = 1 hour  Now we can calculate the distance for the bee:

D = Vbee * t = 25 * 1 = 25 miles

6 0
3 years ago
A car is driven off a cliff at 39 m/s. It lands 141 m from the base. How high
Mumz [18]

Answer: A

Explanation: STEP BY STEP

4 0
2 years ago
A 1.05 kg block slides with a speed of 0.865 m/s on a frictionless horizontal surface until it encounters a spring with a force
djyliett [7]

Answer:

a) U = 0 J    

k = 0.393 J

E = 0.393 J

b) U = 0.0229J

k = 0.370 J

E = 0.393 J

c) U = 0.0914 J

k = 0.302 J

E = 0.393 J

d) U = 0.206 J

k = 0.187 J

E = 0.393 J

e) U = 0.366 J

k = 0.027 J

E = 0.393 J

Explanation:

Hi there!

The equations of kinetic energy and elastic potential energy are as follows:

k = 1/2 · m · v²

U = 1/2 · ks · x²

Where:

m = mass of the block.

v = velocity.

ks = spring constant.

x = displacement of the string.

a) When the spring is not compressed, the spring potential energy will be zero:

U = 1/2 · ks · x²

U = 1/2 · 457 N/m · (0 cm)²

U = 0 J

The kinetic energy of the block will be:

k = 1/2 · m · v²

k = 1/2 · 1.05 kg · (0.865 m/s)²

k = 0.393 J

The mechanical energy will be:

E = k + U = 0.393 J + 0 J = 0.393 J

This energy will be conserved, i.e., it will remain constant because there is no work done by friction nor by any other dissipative force (like air resistance). This means that the kinetic energy will be converted only into spring potential energy (there is no thermal energy due to friction, for example).

b) The spring potential energy will be:

U = 1/2 · 457 N/m · (0.01 m)²

U = 0.0229 J

Since the mechanical energy has to remain constant, we can use the equation of mechanical energy to obtain the kinetic energy:

E = k + U

0.393 J = k + 0.0229 J

0.393 J - 0.0229 J = k

k = 0.370 J

c) The procedure is now the same. Let´s calculate the spring potential energy with x = 0.02 m.

U = 1/2 · 457 N/m · (0.02 m)²

U = 0.0914 J

Using the equation of mechanical energy:

E = k + U

0.393 J = k + 0.0914 J

k = 0.393 J - 0.0914 J = 0.302 J

d) U = 1/2 · 457 N/m · (0.03 m)²

U = 0.206 J

E = 0.393 J

k = E - U = 0.393 J - 0.206 J

k = 0.187 J

e) U = 1/2 · 457 N/m · (0.04 m)²

U = 0.366 J

E = 0.393 J

k = E - U = 0.393 J - 0.366 J = 0.027 J.

4 0
3 years ago
Protons and neutrons grouped in a specific pattern
alexgriva [62]
Answer b protons and electrons
5 0
3 years ago
Other questions:
  • A large rock of mass me materializes stationary at the orbit of Mercury and falls into the sun. Itf the Sun has a mass ms and ra
    14·1 answer
  • bailee bad a gross income of 2358.33 during each pay period in 2009. if she got paid monthly , how much of her oay was defucted
    5·1 answer
  • What are some physical properties of a star
    14·2 answers
  • Jane has a mass of 40 kg. She pushes on a rock with a force of 100 N. what force does the rock exert on Jane
    5·1 answer
  • Which of the following methods of improving air quality does not require advanced technology?
    9·1 answer
  • On a map, a measurement of 1.0 cm represents a velocity of 100 m/s. If you were to draw a vector on the map that represents 80 m
    10·1 answer
  • Sunlight above the Earth's atmosphere has an intensity of 1.36 kW/m2. If this is reflected straight back from a mirror that has
    5·1 answer
  • Scientists discovered how to use x-rays over 100 years ago. They found that x-rays
    10·2 answers
  • Does specific heat of a substance depend on its temperature?​
    11·1 answer
  • If a galaxy has an apparent radial velocity of 2000 km/s and the Hubble constant is 70 km/s/Mpc, how far away is the galaxy
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!