Answer:
49 N
Explanation:
In order to move the box at constant speed, the acceleration of the box must be zero (a=0): this means, according to Newton's second law,
F = ma
that the net force acting on the box, F, must be zero as well.
Here there are two forces acting on the box in the horizontal direction while it is moving:
- The force of push applied by the guy, F
- The frictional force, 
For an object moving on a flat surface, the frictional force is given by

where
is the coefficient of friction
m is the mass of the box
g is the acceleration of gravity
So the equation of the forces becomes

And substituting:

We find the force that must be applied by the guy:

Answer:
Momentum of system = 37.2 Kgm/s.
Explanation:
<u>Given the following data;</u>
- Mass A = 5 kg
- Velocity A = 6 m/s
- Mass B = 12 kg
- Velocity B = 0.6 m/s
To find the momentum of the system;
Momentum can be defined as the multiplication (product) of the mass possessed by an object and its velocity. Momentum is considered to be a vector quantity because it has both magnitude and direction.
Mathematically, momentum is given by the formula;
Momentum = mass * velocity
<u>For object A;</u>
Momentum A = 5 * 6
Momentum A = 30 Kgm/s
<u>For object B;</u>
Momentum B = 12 * 0.6
Momentum B = 7.2 Kgm/s
Next, we would determine the momentum of this system using the formula;
Momentum of system = Momentum A + Momentum B
Substituting the values into the formula, we have;
Momentum of system = 30 + 7.2
<em>Momentum of system = 37.2 Kgm/s.</em>
Communicating the findings is part of a scientific investigation! The last option