Answer:
(a) ν = 3.1 × 10¹³ s⁻¹
(b) λ = 3.467 μm
Explanation:
We can solve both problems using the following expression.
c = λ × ν
where,
c: speed of light
λ: wavelength
ν: frequency
(a)
c = λ × ν
ν = c / λ
ν = (3.000 × 10⁸ m/s) / (9.6 × 10⁻⁶ m)
ν = 3.1 × 10¹³ s⁻¹
(b)
c = λ × ν
λ = c / ν
λ = (3.000 × 10⁸ m/s) / (8.652 × 10¹³ s⁻¹)
λ = 3.467 × 10⁻⁶ m
λ = 3.467 × 10⁻⁶ m (10⁶ μm/ 1 m)
λ = 3.467 μm
Answer:
the answer would be A have good day
Explanation:
pls mark brainliest and 5 stars
<3
Answer:
subscript is 3
Explanation:
the subscript is the number that is slightly lower than a # which in this case it's O
this indicates that there's 3 oxygen atoms
Magma in quiet eruptions has a low content in silica , while in explosive eruptions, it has a high Content in silica. A volcano that erupts quietly has magma that is low in silica. Low-silica magma has low viscosity and flows easily. A volcano that erupts explosively has magma that is high in silica. High-silica magma has high viscosity, making it thick and sticky, thus it flows slowly.
<h3>
Answer:</h3>
28.52 seconds
<h3>
Explanation:</h3>
Initial number of atoms of Nitrogen 12,000 atoms
Half-life = 7.13
Number of atoms after decay = 750 atoms
We are required to determine the time taken for the decay.
Note that half life is the time taken for a radioactive isotope to decay to a half of its original amount.
Using the formula;
Remaining amount = Initial amount × (1/2)^n , where n is the number of half lives
In our case;
750 atoms = 12,000 atoms × (1/2)^n
0.0625 = 0.5^n
n = log 0.0625 ÷ log 0.5
n = 4
But, 1 half life =7.13 seconds
Therefore;
Time taken = 7.13 seconds × 4
= 28.52 seconds
Therefore, the time taken for 12,000 atoms of nitrogen to decay to 750 atoms is 28.52 seconds