Halogens are a group of elements consisting of Fluorine, Chlorine, Bromine, Iodine and Astatine. In their ionic form, they have a superscript of -1, for example, chloride ion is Cl-1. These means that they readily accept one electron in order to achieve the Octet rule. The Octet rule states that each atom must contain 8 electrons in their valence shell for it to be stable. The most stable set of elements are the noble gases. Because they already fulfill the Octet rule, they no longer take part in reactions. Halogens are also very electronegative, meaning, they attract more electrons toward them. This is also a consequence of the Octet rule.
From the choices, the answers would be:
<span>they require only one electron to complete their outer shell
they have a high electronegativity</span>
3024.75 Joules needed to warm iron
The correct option is B.
Mendeleev was the one who originated the idea of arranging elements in the periodic table according to their chemical and physical properties. He left spaces in the periodic table and predicted the discovery of those elements that had not been discovered then. One of these elements is Gallium. He predicted that gallium is going to be a metal and he gave the properties that the element will possess. He also predicted that the element gallium will be placed under aluminium in the periodic table.
B, the Internet.
If Caitlin told Teddy that the largest diamond was found YESTERDAY then it wouldn't be in last month's science magazine. It also wouldn't be able to be in an encyclopedia at the library because there wouldn't have been any time to write, publish, and for the library to get the encyclopedia in one day. Caitlin's parents may not know about Caitlin's claim or about the diamond in the first place. The Internet would likely have an article about the news-breaking diamond as soon as possible.
The concentration of [H3O⁺]=2.86 x 10⁻⁶ M
<h3>Further explanation</h3>
In general, the weak acid ionization reaction
HA (aq) ---> H⁺ (aq) + A⁻ (aq)
Ka's value
![\large {\boxed {\bold {Ka \: = \: \frac {[H ^ +] [A ^ -]} {[HA]}}}}](https://tex.z-dn.net/?f=%5Clarge%20%7B%5Cboxed%20%7B%5Cbold%20%7BKa%20%5C%3A%20%3D%20%5C%3A%20%5Cfrac%20%7B%5BH%20%5E%20%2B%5D%20%5BA%20%5E%20-%5D%7D%20%7B%5BHA%5D%7D%7D%7D%7D)
Reaction
HC₂H₃O₂ (aq) + H₂O (l) ⇔ (aq) + H₃O⁺ (aq) Ka = 1.8 x 10⁻⁵
![\tt Ka=\dfrac{[C_2H_3O^{2-}[H_3O^+]]}{[HC_2H_3O_2]}}\\\\1.8\times 10^{-5}=\dfrac{0.22\times [H_3O^+]}{0.035}](https://tex.z-dn.net/?f=%5Ctt%20Ka%3D%5Cdfrac%7B%5BC_2H_3O%5E%7B2-%7D%5BH_3O%5E%2B%5D%5D%7D%7B%5BHC_2H_3O_2%5D%7D%7D%5C%5C%5C%5C1.8%5Ctimes%2010%5E%7B-5%7D%3D%5Cdfrac%7B0.22%5Ctimes%20%5BH_3O%5E%2B%5D%7D%7B0.035%7D)
[H₃O⁺]=2.86 x 10⁻⁶ M