)
5
-5
1 2 3
4
5
Other than at t = 0, when is the velocity of
the object equal to zero?
1. 5.0 s
2. 4.0 s
3. 3.5 s
4. At no other time on this graph. correct
5. During the interval from 1.0 s to 3.0 s.
Explanation:
Since vt =
Z t
0
a dt, vt
is the area between
the acceleration curve and the t axis during
the time period from 0 to t. If the area is above
the horizontal axis, it is positive; otherwise, it
is negative. In order for the velocity to be zero
at any given time t, there would have to be
equal amounts of positive and negative area
between 0 and t. According to the graph, this
condition is never satisfied.
005 (part 1 of 1) 0 points
Identify all of those graphs that represent motion
at constant speed (note the axes carefully).
a) t
x
b) t
v
c) t
a
d) t
v
e) t
a
One reason is that when you have been out in the cold, your hands feet and exposed features of your face will take time to recover as the blood circulation improves and supplied warm blood to capillaries. So the relatively warm room you enter will not immediately feel warm until the blood has regained its normal circulation. Other factors are that windows are cooled from the outside and condensation forms on the inside because of moisture in the air. For this condensation to evaporate requires heat, which will be extracted from the room and the air near the windows will be cooled. The cold air will descend and form a draught at floor level and this will tend to make the room cooler.
Answer:


Explanation:
k = Coulomb constant = 
Q = Charge
r = Distance = 8 cm
R = Radius = 4 cm
Electric field is given by

Volume charge density is given by

The volume charge density for the sphere is 

The magnitude of the electric field is 
Answer:
write the name of any five districts of nepal
Answer
given,
Length of the string, L = 2 m
speed of the wave , v = 50 m/s
string is stretched between two string
For the waves the nodes must be between the strings
the wavelength is given by

where n is the number of antinodes; n = 1,2,3,...
the frequency expression is given by

now, wavelength calculation
n = 1

λ₁ = 4 m
n = 2

λ₂ = 2 m
n =3

λ₃ = 1.333 m
now, frequency calculation
n = 1


f₁ = 12.5 Hz
n = 2


f₂= 25 Hz
n = 3


f₃ = 37.5 Hz