Answer:
There are 0.1 moles of solute in 250 mL of 0.4 M solution
Explanation:
because it is
Answer:

Explanation:
pH is derived from the concentration of hydronium ions in a solution. Hydrocyanic acid is HCN.
First, we shall figure out the moles of HCN:

If HCN was a strong acid:
HCN has a 1:1 ratio of H+ ions, the moles of H+ is also the same.
To find the molarity, we now divide by Liters. This gets us:

Finally, we plug it into the definition of pH:
![pH = -log[H^{+} ]](https://tex.z-dn.net/?f=pH%20%3D%20-log%5BH%5E%7B%2B%7D%20%5D)


However, since HCN is a weak acid, it only partially dissociates. The
of HCN is
.
![K_a = \frac{[H^+][A^-]}{[HA]}](https://tex.z-dn.net/?f=K_a%20%3D%20%5Cfrac%7B%5BH%5E%2B%5D%5BA%5E-%5D%7D%7B%5BHA%5D%7D)
We can use an ice table to determine that when x = H+,

![[H^+] = 8.83*10^{-6}](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%20%3D%208.83%2A10%5E%7B-6%7D)
![pH = -log[H^{+} ]](https://tex.z-dn.net/?f=pH%20%3D%20-log%5BH%5E%7B%2B%7D%20%5D)


Definition of melting point:
The melting point of solid is defined as the temperature at which the solid exists in equilibrium with its liquid under an external pressure of one atmosphere.
Reason:
The melting point is an important physical property of a compound.
1) The melting point can be used to identify a substance.
2) As an indication of its purity.
Answer:
if you tell me how much is needed and how much you have then i can answer it, but there is not enough information provided to answer to that question.
Explanation:
Answer:
0.019 g.
Explanation:
- Firstly, we need to find the no. of moles of oxygen gas:
- We can use the general law of ideal gas: <em>PV = nRT.
</em>
where, P is the pressure of the gas in atm (P = 1.02 atm).
V is the volume of the gas in L (V = 15.0 L).
n is the no. of moles of the gas in mol (n = ??? mol).
R is the general gas constant (R = 0.0821 L.atm/mol.K),
T is the temperature of the gas in K (T = 28°C + 273 = 301.0 K).
∴ n = PV/RT = (1.02 atm)(15.0 L)/(0.0821 L.atm/mol.K)(301.0 K) = 0.62 mol.
- To find the mass of oxygen gas, we have:
<em>no. of moles = mass/molar mass.</em>
<em></em>
∴ mass of oxygen = (no. of moles)(molar mass) = (0.62 mol)(32.0 g/mol) = 0.019 g.