Answer:
5.2941176471 kg or 5294.1 grams
Explanation:
g.p.e= mgh
g.p.e/gh=m
180j/10×3.4= m
180/34= m
5.2941 kg= m
Precisely around 1,800 miles below.
Answer:
The mass will accelerate. Balanced Forces: When forces are in balance, acceleration is zero. Velocity is constant and there is no net or unbalanced force. A plane will fly at constant velocity if the acceleration is zero.
Explanation:
Answer:
189 m/s
Explanation:
The pilot will experience weightlessness when the centrifugal force, F equals his weight, W.
So, F = W
mv²/r = mg
v² = gr
v = √gr where v = velocity, g = acceleration due to gravity = 9.8 m/s² and r = radius of loop = 3.63 × 10³ m
So, v = √gr
v = √(9.8 m/s² × 3.63 × 10³ m)
v = √(35.574 × 10³ m²/s²)
v = √(3.5574 × 10⁴ m²/s²)
v = 1.89 × 10² m/s
v = 189 m/s
Answer:
The coefficient of static friction between the puppy and the floor is 0.7273.
Explanation:
The horizontal force applied to move the puppy from a steady state has to be greater than the force of static friction, after it is moving the force needs to be equal to be greater than the force of dynamic friction in order to maintain its movement. The force of static friction is given by:

Where
is the static friction force,
is the coefficient of static friction and
is the normal force. Since there's no angle on the flor the normal force is equal to the weight of the puppy, therefore,
, to make the puppy moving we need to use a force of 80 N, therefore,
, so we can solve for the coefficient as shown below:

The coefficient of static friction between the puppy and the floor is 0.7273.