Answer:
Mass = 121 g
Explanation:
Given data:
Mass in gram of CO₂ = ?
Volume = 61.8 L
Pressure = standard = 1 atm
Temperature = 273.15 K
Solution:
Formula:
PV = nRT
P= Pressure
V = volume
n = number of moles
R = general gas constant = 0.0821 atm.L/ mol.K
T = temperature in kelvin
1 atm × 61.8 L = n ×0.0821 atm.L/ mol.K × 273.15 k
61.8 L.atm = 22.42 atm.L/ mol × n
n = 61.8 L.atm /22.42 atm.L/ mol
n = 2.76 mol
Mass in gram:
Mass = number of moles × molar mass
Mass = 2.76 mol × 44 g/mol
Mass = 121 g
Answer:
As the electrostatically charged object is to be placed in the field of charged particles it will be attracted to those who would be of oppositely charged and repelled by the same charged particles. phenomenon of like charges repel and opposite charges attract each other will be carried out and no deflection will be shown by the charge towards the neutral charge.
Answer:
See explaination
Explanation:
Chlorine’s disinfection properties have helped improve the lives of billions of people around the world. Chlorine also is an essential chemical building block, used to make many products that contribute to public health and safety, advanced technology, nutrition, security and transportation.
Please kindly check attachment for the step by step solution of the given problem.
<h3>Answer:</h3>
18.75 grams
<h3>Explanation:</h3>
- Half-life refers to the time taken by a radioactive material to decay by half of the original mass.
- In this case, the half-life of element X is 10 years, which means it takes 10 years for a given mass of the element to decay by half of its original mass.
- To calculate the amount that remained after decay we use;
Remaining mass = Original mass × (1/2)^n, where n is the number of half-lives
Number of half-lives = Time for the decay ÷ Half-life
= 40 years ÷ 10 years
= 4
Therefore;
Remaining mass = 300 g × (1/2)⁴
= 300 g × 1/16
= 18.75 g
Hence, a mass of 300 g of an element X decays to 18.75 g after 40 years.
Answer: 4
Explanation:
Principle Quantum Numbers: This quantum number describes the size of the orbital. It is represented by n.
Azimuthal Quantum Number: This quantum number describes the shape of the orbital. It is represented as 'l'. The value of l ranges from 0 to (n-1). For l = 0,1,2,3... the orbitals are s, p, d, f...
Magnetic Quantum Number: This quantum number describes the orientation of the orbitals. It is represented as
. The value of this quantum number ranges from
. When l = 2, the value of
will be -2, -1, 0, +1, +2.
Given : a f subshell, thus l = 3 , Thus the subshells present would be 3, 2, 1, 0 and thus n will have a value of 4.
Also electrons give are 32.
The formula for number of electrons is
.


Thus principal quantum no will be n= 4.