Answer:
To calculate anything - speed, acceleration, all that - we need <em>data</em>. The more data we have, and the more accurate that data is, the more accurate our calculations will be. To collect that data, we need to <em>measure </em>it somehow. To measure anything, we need tools and a method. Speed is a measure of distance over time, so we'll need tools for measuring <em>time </em>and <em>distance</em>, and a method for measuring each.
Conveniently, the lamp posts in this problem are equally spaced, and we can treat that spacing as our measuring stick. To measure speed, we'll need to bring time in somehow too, and that's where the stopwatch comes in. A good method might go like this:
- Press start on the stopwatch right as you pass a lamp post
- Each time you pass another lamp post, press the lap button on the stopwatch
- Press stop after however many lamp posts you'd like, making sure to hit stop right as you pass the last lamp post
- Record your data
- Calculate the time intervals for passing each lamp post using the lap data
- Calculate the average of all those invervals and divide by 40 m - this will give you an approximate average speed
Of course, you'll never find an *exact* amount, but the more data points you have, the better your approximation will become.
 
        
             
        
        
        
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;kk
        
             
        
        
        
Answer:
time taken by the wave to reach the person is 0.2 s
Explanation:
As we know that the speed of the wave is given as

here we know that the wavelength of the wave is


now speed of the wave is given as


Now time taken by the wave to reach 5 m distance is



 
        
             
        
        
        
Answer:
Other movements are involuntary meaning they are not under conscious control such as the contraction of your pupil in bright light muscle tissue is classified into three types according to structure and function skeletal cardiac and smooth