Answer:
D. All of the above
Explanation:
E = MC² is a common equation in physics.
E is energy
M is mass
C is the speed of light
The law was stated by Albert Einstein.
- From this law, it was shown that energy is released when matter is destroyed.
- Mass and energy are equivalent as seen in nuclear reactions where mass is converted to energy.
- Mass and energy is usually conserved in any process and this is a subtle modification of the law of conservation of matter and energy.
- Most of these postulates apply to nuclear reactions which generally do not follow some precepts of chemical laws.
Answer:
The total heat required is 3.4 kJ
Explanation:
Calorimetry is the measurement and calculation of the amounts of heat exchanged by a body or a system.
There is a direct proportional relationship between heat and temperature. So, the amount of heat a body receives or transmits is determined by:
Q = c * m * ΔT
where Q is the heat exchanged by a body of mass m, made up of a specific heat substance c and where ΔT is the temperature variation.
In this case you know;
- c= 4

- m= 10 g
- ΔT= Tfinal - Tinitial= 10 C - 0 C= 10 C
Replacing:

Solving:
<em>Q1= 400 J</em>
On the other hand, you must determine the heat required to convert 0 ∘ C of ice to 0 ∘ C of liquid water by:
Q2=m*heat of fusion
Q2=10 g* 300 
<em>Q2= 3,000 J</em>
The total heat required is:
Q= Q1 + Q2= 400 J + 3,000 J
Q= 3,400 J= 3.4 kJ (1 kJ= 1,000 J)
<u><em>The total heat required is 3.4 kJ</em></u>
Answer:
c
Explanation:
b and d are out, the variables are changed. a would be a repetition, not a replication. c uses the same method and variables with a different control group
METALS ARE MAGNETIC(and maybe metalloids)
The coefficient of performance (cop) of a refrigerator is defined as the ratio of " the work necessary to heat or cool something usefully."
The usable heating or cooling delivered to work required ratio, also known as the coefficient of performance, or COP, of a heat pump, refrigerator, as well as air conditioning system. Higher efficiency, less energy (power) usage, and thus reduced operational costs are all related to higher COPs.
Coefficient of performance formula:

where, K = Coefficient of performance,
= heat of pumps output,
= work required by the system.
It is refrigeration's coefficient of performance (COP) will always be greater than 1.
Therefore, the coefficient of performance (cop) of a refrigerator is defined as the ratio of " the work necessary to heat or cool something usefully."
To know more about coefficient of performance
brainly.com/question/14058512
#SPJ4