Answer:
The mass is 1200 kilograms
Explanation:
Because Force is equal to mass times acceleration (F=m×a)
F=m×a
1800N=?×1.5
1800÷1.5=1200
1800N=1200Kg×1.5
Answer:
1973. K
Explanation:
PV=nRT
(5.4)(120)=(4)(0.0821)T
648=(0.3284)T
1973. = T
Using the ideal gas equation, T is measured in Kelvin.
Or, you could isolate T:
T = PV/nR
The answer is the same.
Explanation :
Angular diameter of a sphere or a circle shows how large a sphere or a circle appears from a given point. It is the angle between the initial and final positions.
The angular diameter of a given sphere or a circle is given by :

where
is angular displacement
d is actual diameter of object
D is distance to the center of sphere
So, angular displacement is inversely proportional to the distance from the object.
<em>Hence, as we move away from the object the angular diameter of an object gets smaller.</em>
Answer:
v = 1176.23 m/s
y = 741192.997 m = 741.19 km
Explanation:
Given
M₀ = 9 Kg (Initial mass)
me = 0.225 Kg/s (Rate of fuel consumption)
ve = 1980 m/s (Exhaust velocity relative to rocket, leaving at atmospheric pressure)
v = ? if t = 20 s
y = ?
We use the equation
v = ∫((ve*me)/(M₀ - me*t)) dt - ∫g dt where t ∈ (0, t)
⇒ v = - ve*Ln ((M₀ - me*t)/M₀) - g*t
then we have
v = - 1980 m/s*Ln ((9 Kg - 0.225 Kg/s*20 s)/(9 Kg)) - (9.81 m/s²)(20 s)
v = 1176.23 m/s
then we apply the formula
y = ∫v dt = ∫(- ve*Ln ((M₀ - me*t)/M₀) - g*t) dt
⇒ y = - ve* ∫ Ln ((M₀ - me*t)/M₀) dt - g*∫t dt
⇒ y = - ve*(Ln((M₀ - me*t)/M₀)*t + (M₀/me)*(M₀ - me*t - M₀*Ln(M₀ - me*t))) - (g*t²/2)
For t = 20 s we have
y = Ln((9 Kg - 0.225 Kg/s*20 s)/9 Kg)*(20 s) + (9 Kg/0.225 Kg/s)*(9 Kg - 0.225 Kg/s*20 s - 9 Kg*Ln(9 Kg - 0.225 Kg/s*20 s)) - (9.81 m/s²*(20 s)²/2)
⇒ y = 741192.997 m = 741.19 km
The graphs are shown in the pics.